0000000000199122

AUTHOR

Brian Luke

0000-0002-1648-5511

showing 11 related works from this author

Inactivation of folylpolyglutamate synthetase Met7 results in genome instability driven by an increased dUTP/dTTP ratio

2020

AbstractThe accumulation of mutations is frequently associated with alterations in gene function leading to the onset of diseases, including cancer. Aiming to find novel genes that contribute to the stability of the genome, we screened the Saccharomyces cerevisiae deletion collection for increased mutator phenotypes. Among the identified genes, we discovered MET7, which encodes folylpolyglutamate synthetase (FPGS), an enzyme that facilitates several folate-dependent reactions including the synthesis of purines, thymidylate (dTMP) and DNA methylation. Here, we found that Met7-deficient strains show elevated mutation rates, but also increased levels of endogenous DNA damage resulting in gross…

Genome instabilityCell- och molekylärbiologiSaccharomyces cerevisiaeGenome Integrity Repair and ReplicationBiologymedicine.disease_causeGenomic InstabilityFolic AcidGene Expression Regulation FungalGeneticsmedicineThymine NucleotidesPeptide SynthasesDNA FungalUracilGeneCell NucleusRegulation of gene expressionMutationFolylpolyglutamate synthaseFungal geneticsDeoxyguanine NucleotidesMutation AccumulationMolecular biologyMitochondriaMutationDNA methylationGenome FungalDeoxyuracil NucleotidesGene DeletionCell and Molecular BiologyDNA Damage
researchProduct

Checkpoint adaptation in recombination-deficient cells drives aneuploidy and resistance to genotoxic agents.

2020

Abstract Human cancers frequently harbour mutations in DNA repair genes, rendering the use of DNA damaging agents as an effective therapeutic intervention. As therapy-resistant cells often arise, it is important to better understand the molecular pathways that drive resistance in order to facilitate the eventual targeting of such processes. We employ recombination-defective diploid yeast as a model to demonstrate that, in response to genotoxic challenges, nearly all cells eventually undergo checkpoint adaptation, resulting in the generation of aneuploid cells with whole chromosome losses that have acquired resistance to the initial genotoxic challenge. We demonstrate that adaptation inhibit…

Genome instabilitySaccharomyces cerevisiae ProteinsDNA RepairDNA repairAneuploidySaccharomyces cerevisiaeBiologyBiochemistryGenomic Instabilitychemistry.chemical_compoundGene Knockout TechniquesDrug Resistance FungalmedicineCytotoxicityMolecular BiologyRecombination GeneticSirolimusCell BiologyCell Cycle Checkpointsmedicine.diseaseAneuploidyPhenotypeDiploidyCell biologyRad52 DNA Repair and Recombination ProteinchemistryAdaptationPloidyDNADNA repair
researchProduct

Non-coding RNAs at the Eukaryotic rDNA Locus: RNA–DNA Hybrids and Beyond

2019

The human ribosomal DNA (rDNA) locus encodes a variety of long non-coding RNAs (lncRNAs). Among them, the canonical ribosomal RNAs that are the catalytic components of the ribosomes, as well as regulatory lncRNAs including promoter-associated RNAs (pRNA), stress-induced promoter and pre-rRNA antisense RNAs (PAPAS), and different intergenic spacer derived lncRNA species (IGSRNA). In addition, externally encoded lncRNAs are imported into the nucleolus, which orchestrate the complex regulation of the nucleolar state in normal and stress conditions via a plethora of molecular mechanisms. This review focuses on the triplex and R-loop formation aspects of lncRNAs at the rDNA locus in yeast and hu…

R-loopNucleolusBiologyDNA RibosomalRibosome03 medical and health scienceschemistry.chemical_compound0302 clinical medicineStructural BiologyTranscription (biology)YeastsHumansMolecular BiologyRibosomal DNA030304 developmental biologyGenetics0303 health sciencesRibosomal RNANon-coding RNAchemistryDNA IntergenicRNA Long NoncodingR-Loop StructuresCell Nucleolus030217 neurology & neurosurgeryDNADNA DamageJournal of Molecular Biology
researchProduct

RNase H1 and H2 are differentially regulated to eliminate RNA-DNA hybrids

2019

SUMMARYRNA-DNA hybrids are tightly regulated to ensure genome integrity. The RNase H enzymes, RNase H1 and H2, contribute to chromosomal stability through the removal of RNA-DNA hybrids. Loss of RNase H2 function is implicated in human diseases of the nervous system and cancer. To better understand RNA-DNA hybrid dynamics, we have focused on elucidating the regulation of the RNase H enzymes themselves. Using yeast as a model system, we demonstrate that RNase H1 and H2 are controlled in different manners. RNase H2 is regulated in a strict cell cycle dependent manner, both in terms of its R-loop removal, and ribonucleotide excision repair functions. RNase H1, however, can function independent…

chemistry.chemical_classificationEnzymechemistrybiologyRNase PRibonucleotide excision repairbiology.proteinRna dna hybridsCell cycleRNase HYeastFunction (biology)Cell biology
researchProduct

Npl3 stabilizes R-loops at telomeres to prevent accelerated replicative senescence.

2019

Abstract Telomere shortening rates must be regulated to prevent premature replicative senescence. TERRA R‐loops become stabilized at critically short telomeres to promote their elongation through homology‐directed repair (HDR), thereby counteracting senescence onset. Using a non‐bias proteomic approach to detect telomere binding factors, we identified Npl3, an RNA‐binding protein previously implicated in multiple RNA biogenesis processes. Using chromatin immunoprecipitation and RNA immunoprecipitation, we demonstrate that Npl3 interacts with TERRA and telomeres. Furthermore, we show that Npl3 associates with telomeres in an R‐loop‐dependent manner, as changes in R‐loop levels, for example, …

SenescenceProteomicssenescenceR-loopNpl3BiologyBiochemistryChromatin Epigenetics Genomics & Functional Genomics03 medical and health sciences0302 clinical medicineReportGeneticsMolecular BiologyCellular SenescenceTelomere Shortening030304 developmental biology0303 health sciencestelomereR‐loopRNAChromosomeRNA–DNA hybridTelomereCell biologyRna immunoprecipitationR-Loop StructuresChromatin immunoprecipitation030217 neurology & neurosurgeryBiogenesisReportsEMBO reports
researchProduct

RNase H1 and H2 Are Differentially Regulated to Process RNA-DNA Hybrids

2019

Summary: RNA-DNA hybrids are tightly regulated to ensure genome integrity. The RNase H enzymes RNase H1 and H2 contribute to chromosomal stability through the removal of RNA-DNA hybrids. Loss of RNase H2 function is implicated in human diseases of the nervous system and cancer. To better understand RNA-DNA hybrid dynamics, we focused on elucidating the regulation of the RNase H enzymes themselves. Using yeast as a model system, we demonstrate that RNase H1 and H2 are controlled in different manners. RNase H2 has strict cell cycle requirements, in that it has an essential function in G2/M for both R-loop processing and ribonucleotide excision repair. RNase H1, however, can function independe…

0301 basic medicinechemistry.chemical_classificationbiologyRNase PR-loopRibonucleotide excision repairRibonuclease HDNACell cycleGeneral Biochemistry Genetics and Molecular BiologyYeastCell biology03 medical and health sciences030104 developmental biology0302 clinical medicineEnzymelcsh:Biology (General)chemistrybiology.proteinHumansRNARNase Hlcsh:QH301-705.5030217 neurology & neurosurgeryFunction (biology)Cell Reports
researchProduct

Molecular and physiological consequences of faulty eukaryotic ribonucleotide excision repair

2019

Abstract The duplication of the eukaryotic genome is an intricate process that has to be tightly safe‐guarded. One of the most frequently occurring errors during DNA synthesis is the mis‐insertion of a ribonucleotide instead of a deoxyribonucleotide. Ribonucleotide excision repair (RER) is initiated by RNase H2 and results in error‐free removal of such mis‐incorporated ribonucleotides. If left unrepaired, DNA‐embedded ribonucleotides result in a variety of alterations within chromosomal DNA, which ultimately lead to genome instability. Here, we review how genomic ribonucleotides lead to chromosomal aberrations and discuss how the tight regulation of RER timing may be important for preventin…

Genome instabilityRibonucleotideDNA RepairDNA repairDNA damageRibonucleotide excision repairRibonuclease HContext (language use)ReviewBiologyGenomic InstabilityGeneral Biochemistry Genetics and Molecular Biology570 Life sciences03 medical and health scienceschemistry.chemical_compound0302 clinical medicineAnimalsHumansMolecular Biology030304 developmental biology0303 health sciencesGeneral Immunology and MicrobiologyGeneral NeuroscienceRNA–DNA hybridDNA Replication Repair & RecombinationEukaryotaDNAtopoisomerase 1ChromatinChromatinCell biologychemistryribonucleotide excision repairGenetic FitnessRNase H2030217 neurology & neurosurgeryDNA570 BiowissenschaftenThe EMBO Journal
researchProduct

Chromatin modifiers and recombination factors promote a telomere fold-back structure, that is lost during replicative senescence.

2020

Telomeres have the ability to adopt a lariat conformation and hence, engage in long and short distance intra-chromosome interactions. Budding yeast telomeres were proposed to fold back into subtelomeric regions, but a robust assay to quantitatively characterize this structure has been lacking. Therefore, it is not well understood how the interactions between telomeres and non-telomeric regions are established and regulated. We employ a telomere chromosome conformation capture (Telo-3C) approach to directly analyze telomere folding and its maintenance in S. cerevisiae. We identify the histone modifiers Sir2, Sin3 and Set2 as critical regulators for telomere folding, which suggests that a dis…

TelomeraseProtein Folding:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::DNA-Binding Proteins::Rad52 DNA Repair and Recombination Protein [Medical Subject Headings]:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Fungal Proteins::Saccharomyces cerevisiae Proteins [Medical Subject Headings]Gene ExpressionYeast and Fungal ModelsArtificial Gene Amplification and ExtensionQH426-470BiochemistryPolymerase Chain ReactionChromosome conformation captureHistonesCromatina0302 clinical medicineSirtuin 2Macromolecular Structure AnalysisSilent Information Regulator Proteins Saccharomyces cerevisiaeCellular Senescence:Organisms::Eukaryota::Fungi::Yeasts::Saccharomyces::Saccharomyces cerevisiae [Medical Subject Headings]0303 health sciencesChromosome BiologyEukaryota:Phenomena and Processes::Genetic Phenomena::Genetic Processes::DNA Replication [Medical Subject Headings]TelomereSubtelomere:Anatomy::Cells::Cellular Structures::Intracellular Space::Cell Nucleus::Cell Nucleus Structures::Intranuclear Space::Chromosomes::Chromosome Structures::Telomere [Medical Subject Headings]Chromatin3. Good healthChromatinCell biologyNucleic acidsTelomeres:Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Cycle::Cell Division::Telomere Homeostasis [Medical Subject Headings]Experimental Organism SystemsDaño del ADNEpigeneticsResearch ArticleSenescenceDNA Replication:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Hydrolases::Amidohydrolases::Histone Deacetylases [Medical Subject Headings]Chromosome Structure and FunctionProtein StructureSaccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeBiologyResearch and Analysis MethodsHistone DeacetylasesChromosomes03 medical and health sciencesSaccharomycesModel Organisms:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Transferases::One-Carbon Group Transferases::Methyltransferases [Medical Subject Headings]:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Intracellular Signaling Peptides and Proteins::Sirtuins::Sirtuin 2 [Medical Subject Headings]:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Fungal Proteins::Saccharomyces cerevisiae Proteins::Silent Information Regulator Proteins Saccharomyces cerevisiae [Medical Subject Headings]DNA-binding proteinsGenetics:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Recombinases::Rec A Recombinases::Rad51 Recombinase [Medical Subject Headings]Molecular Biology TechniquesMolecular Biology030304 developmental biologyCromosomasSenescencia celularOrganismsFungiBiology and Life SciencesProteinsTelomere HomeostasisCell BiologyDNAMethyltransferasesG2-M DNA damage checkpointProteína recombinante y reparadora de ADN Rad52YeastTelomereRad52 DNA Repair and Recombination ProteinRepressor ProteinsAnimal Studies:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Transcription Factors::Repressor Proteins [Medical Subject Headings]DNA damageRad51 RecombinaseHomologous recombination030217 neurology & neurosurgeryTelómeroDNA DamagePLoS Genetics
researchProduct

From “Cellular” RNA to “Smart” RNA: Multiple Roles of RNA in Genome Stability and Beyond

2018

Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA…

0301 basic medicineGenome instabilityRegulation of gene expressionRNA UntranslatedTranscription GeneticChemistryRNA-Binding ProteinsRNARNA-binding proteinGeneral ChemistryComputational biologyNon-coding RNAArticleGenomic Instability03 medical and health sciences030104 developmental biologyGene Expression RegulationTranscription (biology)RNA interferenceGene expressionHumans570 Life sciences; biologyDNA Breaks Double-StrandedRNA InterferenceDNA Damage
researchProduct

Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle

2017

Maintenance of a minimal telomere length is essential to prevent cellular senescence. When critically short telomeres arise in the absence of telomerase, they can be repaired by homology-directed repair (HDR) to prevent premature senescence onset. It is unclear why specifically the shortest telomeres are targeted for HDR. We demonstrate that the non-coding RNA TERRA accumulates as HDR-promoting RNA-DNA hybrids (R-loops) preferentially at very short telomeres. The increased level of TERRA and R-loops, exclusively at short telomeres, is due to a local defect in RNA degradation by the Rat1 and RNase H2 nucleases, respectively. Consequently, the coordination of TERRA degradation with telomere r…

0301 basic medicineSenescenceTelomeraseSaccharomyces cerevisiae ProteinssenescenceDNA damageR-loopTelomere-Binding ProteinsSaccharomyces cerevisiaeBiologyDDRGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesRif2Cellular SenescenceTelomere-binding proteinRNA-DNA hybridtelomereBiochemistry Genetics and Molecular Biology (all)Telomere-Binding ProteinCell CycleRNANucleic Acid HybridizationRecombinational DNA RepairTERRARepressor ProteinMolecular biologyRat1ExoribonucleaseTelomereRepressor Proteins030104 developmental biologyCell AgingExoribonucleasesR-loopRNase H2Cell agingSaccharomyces cerevisiae ProteinDNA Damage
researchProduct

Checkpoint adaptation in repair-deficient cells drives aneuploidy and resistance to genotoxic agents

2018

AbstractHuman cancers frequently harbour mutations in DNA repair genes, rendering the use of DNA damaging agents as an effective therapeutic intervention. As therapy-resistant cells often arise, it is important to better understand the molecular pathways that drive resistance in order to facilitate the eventual targeting of such processes. We employ repair-defective diploid yeast as a model to demonstrate that, in response to genotoxic challenges, nearly all cells eventually undergo checkpoint adaptation, resulting in the generation of aneuploid cells with whole chromosome losses that have acquired resistance to the initial genotoxic challenge. We demonstrate that adaptation inhibition, eit…

DNA repairAneuploidyBiologymedicine.diseasePhenotypeYeastCell biologychemistry.chemical_compoundchemistrymedicinePloidyAdaptationCytotoxicityDNA
researchProduct