6533b830fe1ef96bd1297024

RESEARCH PRODUCT

Some results on the rotated infinitely deep potential and its coherent states

Fabio Bagarello

subject

Statistics and ProbabilityPhysicsQuantum PhysicsHilbert spaceFOS: Physical sciencesCondensed Matter Physics01 natural sciences010305 fluids & plasmassymbols.namesakeTheoretical physicsLadder operatorQuantum harmonic oscillatorDeformed quantum mechanical systems Gazeau–Klauder coherent states Orthonormal bases0103 physical sciencessymbolsQuantum systemCoherent statesConfiguration space010306 general physicsHamiltonian (quantum mechanics)Quantum Physics (quant-ph)Settore MAT/07 - Fisica MatematicaEigenvalues and eigenvectors

description

The Swanson model is an exactly solvable model in quantum mechanics with a manifestly non self-adjoint Hamiltonian whose eigenvalues are all real. Its eigenvectors can be deduced easily, by means of suitable ladder operators. This is because the Swanson Hamiltonian is deeply connected with that of a standard quantum Harmonic oscillator, after a suitable rotation in configuration space is performed. In this paper we consider a rotated version of a different quantum system, the infinitely deep potential, and we consider some of the consequences of this rotation. In particular, we show that differences arise with respect to the Swanson model, mainly because of the technical need of working, here, with different Hilbert spaces, rather than staying in $\Lc^2(\mathbb{R})$. We also construct Gazeau-Klauder coherent states for the system, and analyse their properties.

https://dx.doi.org/10.48550/arxiv.2011.10047