6533b830fe1ef96bd12970bf

RESEARCH PRODUCT

Magnetic properties of quantum dots and rings

B. MottelsonM KoskinenStephanie ReimannMatti Manninen

subject

Quantum phase transitionPhysicssymbols.namesakePauli exclusion principleCondensed matter physicsQuantum dotJelliumPrincipal quantum numbersymbolsElectronic structureMagnetic quantum numberQuantum numberAtomic and Molecular Physics and Optics

description

Exact many-body methods as well as current-spin-density functional theory are used to study the magnetism and electron localization in two-dimensional quantum dots and quasi-one-dimensional quantum rings. Predictions of broken-symmetry solutions within the density functional model are confirmed by exact configuration interaction (CI) calculations: In a quantum ring the electrons localize to form an antiferromagnetic chain which can be described with a simple model Hamiltonian. In a quantum dot the magnetic field localizes the electrons as predicted with the density functional approach.

https://doi.org/10.1007/s100530170134