6533b830fe1ef96bd1297138

RESEARCH PRODUCT

Typology of exogenous organic matters based on chemical and biochemical composition to predict potential nitrogen mineralization

Bernard NicolardotVirginie ParnaudeauGwenaëlle LashermesBruno MaryMarie-laure GuillotinSabine HouotChristine VilletteLaurent ThurièsThierry MorvanAntoine TricaudLaure MetzgerRémi ChaussodMonique Lineres

subject

[SDV.BIO]Life Sciences [q-bio]/Biotechnologygenetic structures010501 environmental sciences01 natural sciencesMinéralisationBiochemical compositionOrganic ChemicalsWaste Management and DisposalHigh potentialhttp://aims.fao.org/aos/agrovoc/c_35657chemistry.chemical_classificationMineralsChemistry04 agricultural and veterinary sciencesGeneral MedicineComposition chimiqueClassificationhierarchical classificationDisponibilité d'élément nutritifCycle de l'azoteEnvironmental chemistryhttp://aims.fao.org/aos/agrovoc/c_5193http://aims.fao.org/aos/agrovoc/c_1794AlgorithmsP33 - Chimie et physique du solBiochemical fractionationEnvironmental EngineeringNitrogenhttp://aims.fao.org/aos/agrovoc/c_7170Mineralogybiochemical fractionationBioengineeringhttp://aims.fao.org/aos/agrovoc/c_27938FractionationTeneur en azoten mineralizationMatière organique du solhttp://aims.fao.org/aos/agrovoc/c_5268Fertilité du solMultiple factor analysisOrganic matterComputer SimulationNitrogen cycle0105 earth and related environmental sciencesRenewable Energy Sustainability and the EnvironmentP35 - Fertilité du sol[ SDV.BIO ] Life Sciences [q-bio]/BiotechnologyMineralization (soil science)eye diseasesAmendement organiqueModels Chemical040103 agronomy & agriculture0401 agriculture forestry and fisheriessense organsexogenous organic mattertypologyhttp://aims.fao.org/aos/agrovoc/c_12965http://aims.fao.org/aos/agrovoc/c_1653http://aims.fao.org/aos/agrovoc/c_15999F04 - Fertilisation

description

Our aim was to develop a typology predicting potential N availability of exogenous organic matters (EOMs) in soil based on their chemical characteristics. A database of 273 EOMs was constructed including analytical data of biochemical fractionation, organic C and N, and results of N mineralization during incubation of soil–EOM mixtures in controlled conditions. Multiple factor analysis and hierarchical classification were performed to gather EOMs with similar composition and N mineralization behavior. A typology was then defined using composition criteria to predict potential N mineralization. Six classes of EOM potential N mineralization in soil were defined, from high potential N mineralization to risk of inducing N immobilization in soil after application. These classes were defined on the basis of EOM organic N content and soluble, cellulose-, and lignin-like fractions. A decision tree based on these variables was constructed in order to easily attribute any EOM to 1 of the 6 classes.

10.1016/j.biortech.2009.08.025http://agritrop.cirad.fr/550945/