6533b830fe1ef96bd12972ef

RESEARCH PRODUCT

Cyclic Complexity of Words

Gabriele FiciLuca Q. ZamboniJulien CassaigneMarinella Sciortino

subject

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata Theory0102 computer and information sciences68R15Characterization (mathematics)[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]01 natural sciencesTheoretical Computer ScienceCombinatoricsConjugacy class[INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL][MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]FOS: MathematicsDiscrete Mathematics and CombinatoricsMathematics - Combinatorics0101 mathematics[MATH]Mathematics [math]Discrete Mathematics and CombinatoricMathematicsDiscrete mathematicsFactor complexity010102 general mathematicsSturmian wordSturmian wordComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Sturmian wordsCyclic complexity factor complexity Sturmian words minimal forbidden factorInfimum and supremumToeplitz matrixComputational Theory and Mathematics010201 computation theory & mathematicsCyclic complexityBounded functionComplexity functionCombinatorics (math.CO)Word (group theory)Computer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics

description

We introduce and study a complexity function on words $c_x(n),$ called \emph{cyclic complexity}, which counts the number of conjugacy classes of factors of length $n$ of an infinite word $x.$ We extend the well-known Morse-Hedlund theorem to the setting of cyclic complexity by showing that a word is ultimately periodic if and only if it has bounded cyclic complexity. Unlike most complexity functions, cyclic complexity distinguishes between Sturmian words of different slopes. We prove that if $x$ is a Sturmian word and $y$ is a word having the same cyclic complexity of $x,$ then up to renaming letters, $x$ and $y$ have the same set of factors. In particular, $y$ is also Sturmian of slope equal to that of $x.$ Since $c_x(n)=1$ for some $n\geq 1$ implies $x$ is periodic, it is natural to consider the quantity $\liminf_{n\rightarrow \infty} c_x(n).$ We show that if $x$ is a Sturmian word, then $\liminf_{n\rightarrow \infty} c_x(n)=2.$ We prove however that this is not a characterization of Sturmian words by exhibiting a restricted class of Toeplitz words, including the period-doubling word, which also verify this same condition on the limit infimum. In contrast we show that, for the Thue-Morse word $t$, $\liminf_{n\rightarrow \infty} c_t(n)=+\infty.$

10.1016/j.jcta.2016.07.002https://hal.archives-ouvertes.fr/hal-01024885