6533b830fe1ef96bd129790a

RESEARCH PRODUCT

Permanent electric dipoles andΛ-doubling constants in the lowestΠ1states of RbCs

O. NikolayevaO. DocenkoE. A. PazyukI. KlincareM. TamanisAndréi ZaitsevskiiRuvin FerberAndrey V. StolyarovMarcis Auzinsh

subject

PhysicsElectric dipole momentsymbols.namesakeStark effectAb initio quantum chemistry methodsExcited statesymbolsState (functional analysis)Electronic structurePerturbation theoryAtomic physicsCoupling (probability)Atomic and Molecular Physics and Optics

description

The article presents first experimental data on the Stark induced $e\text{\ensuremath{-}}f$ mixing in the $(4)\phantom{\rule{0.2em}{0ex}}^{1}\ensuremath{\Pi}$ state of the $^{85}\mathrm{Rb}^{133}\mathrm{Cs}$ molecule, as well as the ab initio calculations of permanent electric dipole moments $(d)$ in the $(1,2,3,4)\phantom{\rule{0.2em}{0ex}}^{1}\ensuremath{\Pi}$ states and $q$ factors in the $(2,4)\phantom{\rule{0.2em}{0ex}}^{1}\ensuremath{\Pi}$ states. The appearance of the ``forbidden'' lines in the laser-induced $(4)\phantom{\rule{0.2em}{0ex}}^{1}\ensuremath{\Pi}\ensuremath{\rightarrow}X\phantom{\rule{0.2em}{0ex}}^{1}\ensuremath{\Pi}^{+}$ fluorescence spectrum in the presence of an electric field allowed us to obtain, for the rovibronic ${v}^{\ensuremath{'}}({J}^{\ensuremath{'}})=2(82)$ level of the $(4)\phantom{\rule{0.2em}{0ex}}^{1}\ensuremath{\Pi}$ state correlating to the $\mathrm{Rb}(4d)+\mathrm{Cs}(6s)$ atomic limit, the ratio $q∕d=0.9\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}7}\phantom{\rule{0.3em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}∕\mathrm{D}$ with 20% experimental error. Electronic structure calculations on the ground and excited states of the RbCs molecule were performed in the framework of the Hund's $a$-coupling scheme by means of the many-body multipartitioning perturbation theory. The ab initio $d(R)$ estimates revealed large values of about $d\ensuremath{\approx}\ensuremath{-}7\phantom{\rule{0.3em}{0ex}}\mathrm{D}$ for the $(4)\phantom{\rule{0.2em}{0ex}}^{1}\ensuremath{\Pi}$ state. The calculated $q$ factor value for the $(2)\phantom{\rule{0.2em}{0ex}}^{1}\ensuremath{\Pi}$ state is in excellent agreement with the literature data. The theoretical estimate of the $q∕d$ ratio for the ${v}^{\ensuremath{'}}({J}^{\ensuremath{'}})=2(82)$ level of the $(4)\phantom{\rule{0.2em}{0ex}}^{1}\ensuremath{\Pi}$ state agrees satisfactory well with the present experimental value.

https://doi.org/10.1103/physreva.71.012510