6533b830fe1ef96bd129791f

RESEARCH PRODUCT

Automatic Myocardial Infarction Evaluation from Delayed-Enhancement Cardiac MRI Using Deep Convolutional Networks

Kibrom Berihu GirumRaabid HussainYoussef SkandaraniAlexis Bozorg GrayeliGilles CréhangeAlain Lalande

subject

Artificial neural networkComputer sciencebusiness.industryDeep learningPattern recognitionDelayed enhancementmedicine.diseaseSupport vector machineClinical informationcardiovascular systemmedicineLeft ventricular cavitySegmentationcardiovascular diseasesMyocardial infarctionArtificial intelligencebusiness

description

In this paper, we propose a new deep learning framework for an automatic myocardial infarction evaluation from clinical information and delayed enhancement-MRI (DE-MRI). The proposed framework addresses two tasks. The first task is automatic detection of myocardial contours, the infarcted area, the no-reflow area, and the left ventricular cavity from a short-axis DE-MRI series. It employs two segmentation neural networks. The first network is used to segment the anatomical structures such as the myocardium and left ventricular cavity. The second network is used to segment the pathological areas such as myocardial infarction, myocardial no-reflow, and normal myocardial region. The segmented myocardium region from the first network is further used to refine the second network’s pathological segmentation results. The second task is to automatically classify a given case into normal or pathological from clinical information with or without DE-MRI. A cascaded support vector machine (SVM) is employed to classify a given case from its associated clinical information. The segmented pathological areas from DE-MRI are also used for the classification task. We evaluated our method on the 2020 EMIDEC MICCAI challenge dataset. It yielded an average Dice index of 0.93 and 0.84, respectively, for the left ventricular cavity and the myocardium. The classification from using only clinical information yielded 80% accuracy over five-fold cross-validation. Using the DE-MRI, our method can classify the cases with 93.3% accuracy. These experimental results reveal that the proposed method can automatically evaluate the myocardial infarction.

https://doi.org/10.1007/978-3-030-68107-4_39