6533b830fe1ef96bd1297ac8

RESEARCH PRODUCT

Processing and Presentation of Murine Cytomegalovirus pORFm164-Derived Peptide in Fibroblasts in the Face of All Viral Immunosubversive Early Gene Functions

Doris DreisDoris ThomasChristian O. SimonMatthias J. ReddehaseNatascha K. A. GrzimekRafaela Holtappels

subject

MuromegalovirusImmunologyAntigen presentationMajor histocompatibility complexMicrobiologyImmediate-Early ProteinsMiceOpen Reading FramesViral ProteinsImmune systemAntigenVirologyMHC class IAnimalsCytotoxic T cellAntigens ViralGenes Immediate-EarlyCells CulturedAntigen PresentationMice Inbred BALB CMembrane GlycoproteinsbiologyAntigen processingFibroblastsVirologyPeptide FragmentsCTL*Insect Sciencebiology.proteinPathogenesis and ImmunityFemaleT-Lymphocytes Cytotoxic

description

ABSTRACTCD8 T cells are the principal effector cells in the resolution of acute murine cytomegalovirus (mCMV) infection in host organs. This undoubted antiviral and protective in vivo function of CD8 T cells appeared to be inconsistent with immunosubversive strategies of the virus effected by early (E)-phase genesm04,m06, andm152. The so-called immune evasion proteins gp34, gp48, and gp37/40, respectively, were found to interfere with peptide presentation at different steps in the major histocompatibility complex (MHC) class I pathway of antigen processing and presentation in fibroblasts. Accordingly, they were proposed to prevent recognition and lysis of infected fibroblasts by cytolytic T lymphocytes (CTL) during the E phase of viral gene expression. We document here that the previously identified MHC class I Dd-restricted antigenic peptide257AGPPRYSRI265encoded by genem164is processed as well as presented for recognition by m164-specific CTL during the E and late phases of viral replication in the very same cells in which the immunosubversive viral proteins are effectual in preventing the presentation of processed immediate-early 1 (m123-exon 4) peptide168YPHFMPTNL176. Thus, while immunosubversion is a reality, these mechanisms are apparently not as efficient as the term immune evasion implies. The pORFm164-derived peptide is the first noted peptide that constitutively escapes the immunosubversive viral functions. The most important consequence is that even the concerted action of all immunosubversive E-phase proteins eventually fails to prevent immune recognition in the E phase. The bottom-line message is that there exists no immune evasion of mCMV in fibroblasts.

https://doi.org/10.1128/jvi.76.12.6044-6053.2002