0000000000025630
AUTHOR
Natascha K. A. Grzimek
Murine Model of Cytomegalovirus Latency and Reactivation
Efficient resolution of acute cytopathogenic cytomegalovirus infection through innate and adaptive host immune mechanisms is followed by lifelong maintenance of the viral genome in host tissues in a state of replicative latency, which is interrupted by episodes of virus reactivation for transmission. The establishment of latency is the result of aeons of co-evolution of cytomegaloviruses and their respective host species. Genetic adaptation of a particular cytomegalovirus to its specific host is reflected by private gene families not found in other members of the cytomegalovirus group, whereas basic functions of the viral replicative cycle are encoded by public gene families shared between …
Subdominant CD8 T-Cell Epitopes Account for Protection against Cytomegalovirus Independent of Immunodomination▿ †
ABSTRACTCytomegalovirus (CMV) infection continues to be a complication in recipients of hematopoietic stem cell transplantation (HSCT). Preexisting donor immunity is recognized as a favorable prognostic factor for the reconstitution of protective antiviral immunity mediated primarily by CD8 T cells. Furthermore, adoptive transfer of CMV-specific memory CD8 T (CD8-TM) cells is a therapeutic option for preventing CMV disease in HSCT recipients. Given the different CMV infection histories of donor and recipient, a problem may arise from an antigenic mismatch between the CMV variant that has primed donor immunity and the CMV variant acquired by the recipient. Here, we have used the BALB/c mouse…
Early gene m18, a novel player in the immune response to murine cytomegalovirus
The identification of all antigenic peptides encoded by a pathogen, its T cell ‘immunome’, is a research aim for rational vaccine design. Screening of proteome-spanning peptide libraries or computational prediction is used to identify antigenic peptides recognized by CD8 T cells. Based on their high coding capacity, cytomegaloviruses (CMVs) could specify numerous antigenic peptides. Yet, current evidence indicates that the memory CD8 T cell response in a given haplotype is actually focused on a few viral proteins. CMVs actively interfere with antigen processing and presentation by the expression of immune evasion proteins. In the case of murine CMV (mCMV), these proteins are effectual in th…
CD8 T Cells Control Cytomegalovirus Latency by Epitope-Specific Sensing of Transcriptional Reactivation
ABSTRACT During murine cytomegalovirus (mCMV) latency in the lungs, most of the viral genomes are transcriptionally silent at the major immediate-early locus, but rare and stochastic episodes of desilencing lead to the expression of IE1 transcripts. This low-frequency but perpetual expression is accompanied by an activation of lung-resident effector-memory CD8 T cells specific for the antigenic peptide 168-YPHFMPTNL-176, which is derivedfrom the IE1 protein. These molecular and immunological findings were combined in the “silencing/desilencing and immune sensing hypothesis” of cytomegalovirus latency and reactivation. This hypothesis proposes that IE1 gene expression proceeds to cell surfac…
Experimental Preemptive Immunotherapy of Murine Cytomegalovirus Disease with CD8 T-Cell Lines Specific for ppM83 and pM84, the Two Homologs of Human Cytomegalovirus Tegument Protein ppUL83 (pp65)
ABSTRACTCD8 T cells are the principal antiviral effectors controlling cytomegalovirus (CMV) infection. For human CMV, the virion tegument protein ppUL83 (pp65) has been identified as a source of immunodominant peptides and is regarded as a candidate for cytoimmunotherapy and vaccination. Two sequence homologs of ppUL83 are known for murine CMV, namely the virion protein ppM83 (pp105) expressed late in the viral replication cycle and the nonstructural protein pM84 (p65) expressed in the early phase. Here we show that ppM83, unlike ppUL83, is not delivered into the antigen presentation pathway after virus penetration before or in absence of viral gene expression, while other virion proteins o…
Mouse models of cytomegalovirus latency: overview.
Abstract Background: The molecular regulation of viral latency and reactivation is a central unsolved issue in the understanding of cytomegalovirus (CMV) biology. Like human CMV (hCMV), murine CMV (mCMV) can establish a latent infection in cells of the myeloid lineage. Since mCMV genome remains present in various organs after its clearance from hematopoietic cells first in bone marrow and much later in blood, there must exist one or more widely distributed cell type(s) representing the cellular site(s) of enduring mCMV latency in host tissues. Endothelial cells and histiocytes are candidates, but the question is not yet settled. Another long debated problem appears to be solved: mCMV establ…
Transactivation of cellular genes involved in nucleotide metabolism by the regulatory IE1 protein of murine cytomegalovirus is not critical for viral replicative fitness in quiescent cells and host tissues.
ABSTRACT Despite its high coding capacity, murine CMV (mCMV) does not encode functional enzymes for nucleotide biosynthesis. It thus depends on cellular enzymes, such as ribonucleotide reductase (RNR) and thymidylate synthase (TS), to be supplied with deoxynucleoside triphosphates (dNTPs) for its DNA replication. Viral transactivation of these cellular genes in quiescent cells of host tissues is therefore a parameter of viral fitness relevant to pathogenicity. Previous work has shown that the IE1, but not the IE3, protein of mCMV transactivates RNR and TS gene promoters and has revealed an in vivo attenuation of the mutant virus mCMV-ΔIE1. It was attractive to propose the hypothesis that la…
Liver Sinusoidal Endothelial Cells Are a Site of Murine Cytomegalovirus Latency and Reactivation▿
ABSTRACT Latent cytomegalovirus (CMV) is frequently transmitted by organ transplantation, and its reactivation under conditions of immunosuppressive prophylaxis against graft rejection by host-versus-graft disease bears a risk of graft failure due to viral pathogenesis. CMV is the most common cause of infection following liver transplantation. Although hematopoietic cells of the myeloid lineage are a recognized source of latent CMV, the cellular sites of latency in the liver are not comprehensively typed. Here we have used the BALB/c mouse model of murine CMV infection to identify latently infected hepatic cell types. We performed sex-mismatched bone marrow transplantation with male donors …
A novel transmembrane domain mediating retention of a highly motile herpesvirus glycoprotein in the endoplasmic reticulum
Gene m164 of murine cytomegalovirus belongs to the large group of 'private' genes that show no homology to those of other cytomegalovirus species and are thought to represent 'host adaptation' genes involved in virus-host interaction. Previous interest in the m164 gene product was based on the presence of an immunodominant CD8 T-cell epitope presented at the surface of infected cells, despite interference by viral immune-evasion proteins. Here, we provide data to reveal that the m164 gene product shows unusual features in its cell biology. A novel strategy of mass-spectrometric analysis was employed to map the N terminus of the mature protein, 107 aa downstream of the start site of the pred…
Processing and Presentation of Murine Cytomegalovirus pORFm164-Derived Peptide in Fibroblasts in the Face of All Viral Immunosubversive Early Gene Functions
ABSTRACTCD8 T cells are the principal effector cells in the resolution of acute murine cytomegalovirus (mCMV) infection in host organs. This undoubted antiviral and protective in vivo function of CD8 T cells appeared to be inconsistent with immunosubversive strategies of the virus effected by early (E)-phase genesm04,m06, andm152. The so-called immune evasion proteins gp34, gp48, and gp37/40, respectively, were found to interfere with peptide presentation at different steps in the major histocompatibility complex (MHC) class I pathway of antigen processing and presentation in fibroblasts. Accordingly, they were proposed to prevent recognition and lysis of infected fibroblasts by cytolytic T…
Random, asynchronous, and asymmetric transcriptional activity of enhancer-flanking major immediate-early genes ie1/3 and ie2 during murine cytomegalovirus latency in the lungs.
ABSTRACT The lungs are a major organ site of cytomegalovirus (CMV) pathogenesis, latency, and recurrence. Previous work on murine CMV latency has documented a high load and an even distribution of viral genomes in the lungs after the resolution of productive infection. Initiation of the productive cycle requires expression of the ie1/3 transcription unit, which is driven by the immediate-early (IE) promoter P 1/3 and generates IE1 and IE3 transcripts by differential splicing. Latency is molecularly defined by the absence of IE3 transcripts specifying the essential transactivator protein IE3. In contrast, IE1 transcripts were found to be generated focally and randomly, reflecting sporadic P …
Role for Tumor Necrosis Factor Alpha in Murine Cytomegalovirus Transcriptional Reactivation in Latently Infected Lungs
ABSTRACT Interstitial pneumonia is a major clinical manifestation of primary or recurrent cytomegalovirus (CMV) infection in immunocompromised recipients of a bone marrow transplant. In a murine model, lungs were identified as a prominent site of CMV latency and recurrence. Pulmonary latency of murine CMV is characterized by high viral genome burden and a low incidence of variegated immediate-early (IE) gene expression, reflecting a sporadic activity of the major IE promoters (MIEPs) and enhancer. The enhancer-flanking promoters MIEP1/3 and MIEP2 are switched on and off during latency in a ratio of ∼2:1. MIEP1/3 latency-associated activity generates the IE1 transcript of the ie1/3 transcrip…
Murine Cytomegalovirus Major Immediate-Early Enhancer Region Operating as a Genetic Switch in Bidirectional Gene Pair Transcription
ABSTRACT Enhancers are defined as DNA elements that increase transcription when placed in any orientation relative to a promoter. The major immediate-early (MIE) enhancer region of murine cytomegalovirus is flanked by transcription units ie1/3 and ie2 , which are transcribed in opposite directions. We have addressed the fundamental mechanistic question of whether the enhancer synchronizes transcription of the bidirectional gene pair (synchronizer model) or whether it operates as a genetic switch, enhancing transcription of either gene in a stochastic alternation (switch model). Clonal analysis of cytokine-triggered, transcription factor-mediated MIE gene expression from latent viral genomes…
Animal models: Murine cytomegalovirus
Publisher Summary This chapter focuses on murine cytomegalovirus (CMV) animal models. Multiple-organ cytomegalovirus disease, interstitial pneumonia in particular, is a major concern in the therapy of hematopoietic malignancies by hematoablative treatment and bone marrow transplantation (BMT). Human CMV (hCMV) is the prototype member of the subfamily, Betaherpesvirinae, of the virus family, Herpesviridae . Its genome is a linear, double-stranded DNA with a coding capacity of ca. 165 open reading frames. During an aeon of co-evolution, CMVs have adapted themselves to their respective hosts; therefore, CMV biology is most reliably studied in a natural virus-host combination. Even though hCMV …
Focal Transcriptional Activity of Murine Cytomegalovirus during Latency in the Lungs
ABSTRACT Interstitial pneumonia is a frequent and critical manifestation of human cytomegalovirus (CMV) disease in immunocompromised patients, in particular in recipients of bone marrow transplantation. Previous work in the murine CMV infection model has identified the lungs as a major organ site of CMV latency and recurrence. It was open to question whether the viral genome is transcriptionally silent or active during latency. Transcription could be latency associated and thus be part of the latency phenotype. Alternatively, transcriptional activity could reflect episodes of reactivation. We demonstrate here that transcription of the immediate-early (IE) transcription unit ie1-ie3 selectiv…
In Vivo Replication of Recombinant Murine Cytomegalovirus Driven by the Paralogous Major Immediate-Early Promoter-Enhancer of Human Cytomegalovirus
ABSTRACT Transcription of the major immediate-early (MIE) genes of cytomegaloviruses (CMV) is driven by a strong promoter-enhancer (MIEPE) complex. Transactivator proteins encoded by these MIE genes are essential for productive infection. Accordingly, the MIEPE is a crucial control point, and its regulation by activators and repressors is pertinent to virus replication. Since the MIEPE contains multiple regulatory elements, it was reasonable to assume that specific sequence motifs are irreplaceable for specifying the cell-type tropism and replication pattern. Recent work on murine CMV infectivity (A. Angulo, M. Messerle, U. H. Koszinowski, and P. Ghazal, J. Virol. 72:8502–8509, 1998) has do…
Synergism between the components of the bipartite major immediate-early transcriptional enhancer of murine cytomegalovirus does not accelerate virus replication in cell culture and host tissues
Major immediate-early (MIE) transcriptional enhancers of cytomegaloviruses are key regulators that are regarded as determinants of virus replicative fitness and pathogenicity. The MIE locus of murine cytomegalovirus (mCMV) shows bidirectional gene-pair architecture, with a bipartite enhancer flanked by divergent core promoters. Here, we have constructed recombinant viruses mCMV-ΔEnh1 and mCMV-ΔEnh2 to study the impact of either enhancer component on bidirectional MIE gene transcription and on virus replication in cell culture and various host tissues that are relevant to CMV disease. The data revealed that the two unipartite enhancers can operate independently, but synergize in enhancing MI…
CD8 T-Cell Immunotherapy of Cytomegalovirus Disease in the Murine Model
Publisher Summary Cytomegaloviruses (CMVs) are conditional pathogens that are strictly species specific and are usually well controlled in their respective mammalian hosts by the effector mechanisms of both innate and adaptive immunity. Human CMV (hCMV) is mostly acquired perinatally as well as in early childhood and is transmitted, for instance, through breast milk and saliva. Whilst the immune response in an immunocompetent host prevents an overt CMV disease and rapidly terminates the productive acute infection, viral genome is maintained in most tissues for the life span of the infected host in a state known as viral latency. Latency implies that infectious virions are no longer produced…