6533b830fe1ef96bd1297b5a

RESEARCH PRODUCT

Novel hybrid polymer composites with graphene and MXene nano-reinforcements: computational analysis

Daiva ZeleniakienėSaulė KvietkaitėLeon MishnaevskyMária OmastováSigitas KilikevičiusAndrey Aniskevich

subject

Materials sciencePolymers and Plastics02 engineering and technology010402 general chemistry01 natural sciencesArticleModellinglaw.inventionlcsh:QD241-441hybrid composites; MXene; graphene; modelling; damagemodellingMatrix (mathematics)lcsh:Organic chemistrylawNano-Hybrid compositesComposite materialReinforcementGraphenegrapheneGeneral ChemistrySolver021001 nanoscience & nanotechnologyAspect ratio (image)Flexible electronicsFinite element method0104 chemical sciencesDamageGraphene0210 nano-technologyhybrid compositesMXenedamage

description

This paper presents a computational analysis on the mechanical and damage behavior of novel hybrid polymer composites with graphene and MXene nano-reinforcements targeted for flexible electronics and advanced high-strength structural applications with additional functions, such as real-time monitoring of structural integrity. Geometrical models of three-dimensional representative volume elements of various configurations were generated, and a computational model based on the micromechanical finite element method was developed and solved using an explicit dynamic solver. The influence of the geometrical orientation, aspect ratio, and volume fractions of the inclusions, as well as the interface properties between the nano-reinforcements and the matrix on the mechanical behavior, was determined. The results of the presented research give initial insights about the mechanical and damage behavior of the proposed composites and provide insight for future design iterations of similar multifunctional materials.

10.3390/polym13071013https://doi.org/10.3390/polym13071013