6533b830fe1ef96bd1297b6b

RESEARCH PRODUCT

Hints of an axion-like particle mixing in the GeV gamma-ray blazar data?

Soebur RazzaqueOlga Mena

subject

AstrofísicaActive galactic nucleusPhotonAxionsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesPartícules (Física nuclear)Spectral lineHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesBlazar010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsActive galactic nucleiRange (particle radiation)Cosmologia010308 nuclear & particles physicsGamma rayAstronomy and AstrophysicsQuasarHigh Energy Physics - Phenomenology13. Climate actionAstrophysics - High Energy Astrophysical PhenomenaFermi Gamma-ray Space Telescope

description

Axion-Like Particles (ALPs), if exist in nature, are expected to mix with photons in the presence of an external magnetic field. The energy range of photons which undergo strong mixing with ALPs depends on the ALP mass, on its coupling with photons as well as on the external magnetic field and particle density configurations. Recent observations of blazars by the Fermi Gamma-Ray Space Telescope in the 0.1-300 GeV energy range show a break in their spectra in the 1-10 GeV range. We have modeled this spectral feature for the flat-spectrum radio quasar 3C454.3 during its November 2010 outburst, assuming that a significant fraction of the gamma rays convert to ALPs in the large scale jet of this blazar. Using theoretically motivated models for the magnetic field and particle density con figurations in the kiloparsec scale jet, outside the broad-line region, we find an ALP mass m(a) similar to (1 – 3).10(-7) eV and coupling g(a gamma) similar to (1 – 3).10(-10) GeV-1 after performing an illustrative statistical analysis of spectral data in four different epochs of emission. The precise values of m(a) and g(a gamma) depend weakly on the assumed particle density con figuration and are consistent with the current experimental bounds on these quantities. We apply this method and ALP parameters found from fitting 3C454.3 data to another flat-spectrum radio quasar PKS1222+216 (4C+21.35) data up to 400 GeV, as a consistency check, and found good fit. We find that the ALP-photon mixing effect on the GeV spectra may not be washed out for any reasonable estimate of the magnetic field in the intergalactic media.

https://doi.org/10.1088/1475-7516/2013/11/023