Search results for "Axions"

showing 10 items of 19 documents

Excess electronic recoil events in XENON1T

2020

We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector. With an exposure of 0.65 t-y and an unprecedentedly low background rate of $76\pm2$ events/(t y keV) between 1 and 30 keV, the data enables sensitive searches for solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4$\sigma$ significance, and a 3D 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by $g_{ae}<3.8 \times 10^{-12}$,…

xenon: targetaxionssolar axionmagnetic momentdimension: 3neutrino: solarPhysics beyond the Standard ModelSolar neutrinodark matter: direct detection01 natural sciences7. Clean energyHigh Energy Physics - ExperimentDark matter direct detection axionHigh Energy Physics - Experiment (hep-ex)neutrinoXENONHigh Energy Physics - Phenomenology (hep-ph)background: lowRecoilelectron: recoil[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]beta-raysParticle Physics Experimentscoupling: (axion 2electron)multi-purpose particle detectornuclear instrumentationComputingMilieux_MISCELLANEOUSinstrumentationPhysicsxenon: liquidboson: dark matteraxion 2nucleontritiumnew physics: search forsemileptonic decayboson: vectortensionneutrino: magnetic momentHigh Energy Physics - Phenomenologyaxion 2photonlow backgroundbosonNeutrinoionizing radiationNucleonAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)dark matter detectorelectronic recoilElectron captureXENON1T detectorDark matterlow-energy electronic recoil dataFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]dark matterNONuclear physicsPE2_2PE2_1tritium: semileptonic decay0103 physical sciencessolar axion modelsurface[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]axion: couplingPE2_4010306 general physicspseudoscalarAxiondark matter: vectordark matter XENON1T detector electronic recoilsolar neutrinodetectorDark Matter Axions Beta Decay Liquid Xenon TPC010308 nuclear & particles physicsaxion 2electroncoupling: (axion 2nucleon)dark matter: detectormodel: axionGran Sassometrology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]axionstellar constraintscoupling: (axion 2photon)High Energy Physics::Experimentparticle dark matterdirect detectionbeta decayaxion: solar[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]experimental results
researchProduct

Conceptual design of the International Axion Observatory (IAXO)

2014

The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few $\times 10^{-12}$ GeV$^{-1}$ and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling $g_{…

MICROPICPhysics - Instrumentation and DetectorsPhotonaxionsParameter space7. Clean energyHigh Energy Physics - ExperimentDark Matter detectors (WIMPs axions etc.)High Energy Physics - Experiment (hep-ex)Observatoryetc.)Micropattern gaseous detectors (MSGC GEM THGEM RETHGEM MHSP MICROPIC MICROMEGAS InGrid etc)Detectors and Experimental TechniquesInstrumentationMathematical PhysicsPhysicsGEMsolar [axion]Dark Matter Detectors (Wimps Axions etc.)MicroMegas detectorX-ray detectorsInstrumentation and Detectors (physics.ins-det)Dark Matter detectors (WIMPs axions etc.); Large detector systems for particle and astroparticle physics; Micropattern gaseous detectors (MSGC GEM THGEM RETHGEM MHSP MICROPIC MICROMEGAS InGrid etc); X-ray detectors; Instrumentation; Mathematical PhysicssolarobservatoryMICROMEGASMHSPaxion-like particlesproposed experimentaxions ; dark matter detectors ; x-ray detectors ; Micropattern gaseous detectors ; large detector systems for particle and astroparticle physicsMicromegasX-ray detectorParticle physicsoptics [X-ray]FOS: Physical sciencesSuperconducting magnetMicropattern gaseous detectors (MSGCddc:610Axionactivity reportDark Matter detectors (WIMPssuperconductivity [magnet]etc)HelioscopeLarge detector systems for particle and astroparticle physicssensitivityInGridRETHGEMOrders of magnitude (time)axionLarge detector systems for particle and astroparticle physicTHGEMMicropattern Gaseous Detectors (MSGC Gem THGEM Rethgem MHSP Micropic Micromegas In Grid; etc)
researchProduct

Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment

2014

XENON is a direct detection dark matter project, consisting of a time projection chamber (TPC) that uses xenon in double phase as a sensitive detection medium. XENON100, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, is one of the most sensitive experiments of its field. During the operation of XENON100, the design and construction of the next generation detector (of ton-scale mass) of the XENON project, XENON1T, is taking place. XENON1T is being installed at LNGS as well. It has the goal to reduce the background by two orders of magnitude compared to XENON100, aiming at a sensitivity of $2 \cdot 10^{-47} \mathrm{cm}^{\mathrm{2}}$ for a WIMP mass of 50 GeV/c$^{2}$. With…

axionsPhysics - Instrumentation and Detectors[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cherenkov and transition radiationCherenkov detectorPhysics::Instrumentation and DetectorsDark matterDetector modelling and simulations I (interaction of radiation with matterchemistry.chemical_elementFOS: Physical sciences01 natural scienceslaw.inventionNuclear physicsXenonWIMPlawCherenkov and transition radiation Detector modelling and simulations Cherenkov detectors Dark Matter detectorsetc.)0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)Dark Matter detectors (WIMPsMathematical PhysicsCherenkov radiationetc)PhysicsMuonTime projection chamber010308 nuclear & particles physicsCherenkov detectorsDetectorAstrophysics::Instrumentation and Methods for Astrophysicsinteraction of photons with matterInstrumentation and Detectors (physics.ins-det)Cherenkov and transition radiation; Cherenkov detectors; Dark Matter detectors (WIMPs axions etc.); Detector modelling and simulations I (interaction of radiation with matter; interaction of hadrons with matter etc); interaction of photons with matter[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]interaction of hadrons with matterchemistryHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for AstrophysicsJOURNAL OF INSTRUMENTATION
researchProduct

Detecting the stimulated decay of axions at radio frequencies

2018

Assuming axion-like particles account for the entirety of the dark matter in the Universe, we study the possibility of detecting their decay into photons at radio frequencies. We discuss different astrophysical targets, such as dwarf spheroidal galaxies, the Galactic Center and halo, and galaxy clusters. The presence of an ambient radiation field leads to a stimulated enhancement of the decay rate; depending on the environment and the mass of the axion, the effect of stimulated emission may amplify the photon flux by serval orders of magnitude. For axion-photon couplings allowed by astrophysical and laboratory constraints(and possibly favored by stellar cooling), we find the signal to be wi…

axionsPhotonAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesRadio telescopeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesStimulated emissionAxionGalaxy clusterAstrophysics::Galaxy AstrophysicsPhysicsdark matter detectorsdark matter theory010308 nuclear & particles physicsGalactic CenterAstronomy and AstrophysicsAstrophysics - Astrophysics of Galaxiesdwarfs galaxiesGalaxy3. Good healthHigh Energy Physics - Phenomenologyaxions; dark matter detectors; dark matter theory; dwarfs galaxiesAstrophysics of Galaxies (astro-ph.GA)Journal of Cosmology and Astroparticle Physics
researchProduct

PBH assisted search for QCD axion dark matter

2022

The entropy production prior to BBN era is one of ways to prevent QCD axion with the decay constant $F_{a}\in[10^{12}{\rm GeV},10^{16}{\rm GeV}]$ from overclosing the universe when the misalignment angle is $\theta_{\rm i}=\mathcal{O}(1)$. As such, it is necessarily accompanied by an early matter-dominated era (EMD) provided the entropy production is achieved via the decay of a heavy particle. In this work, we consider the possibility of formation of primordial black holes during the EMD era with the assumption of the enhanced primordial scalar perturbation on small scales ($k>10^{4}{\rm Mpc}^{-1}$). In such a scenario, it is expected that PBHs with axion halo accretion develop to ultracomp…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)axionsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesmustat aukotAstrophysics::Cosmology and Extragalactic Astrophysicshiukkasfysiikkakosmologianeutron starspimeä aineHigh Energy Physics - Phenomenology (hep-ph)neutronitähdetParticle Physics - PhenomenologyHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEdark matter experimentsHigh Energy Physics::Phenomenologyprimordial black holesAstronomy and Astrophysicshep-phHigh Energy Physics - Phenomenologyastro-ph.COkvanttiväridynamiikkaHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Design of New Resonant Haloscopes in the Search for the Dark Matter Axion: A Review of the First Steps in the RADES Collaboration

2022

This article belongs to the Special Issue Studying the Universe from Spain.

Dark matter detectorsResonant cavitiesaxionsdark matter detectorsPhysics - Instrumentation and Detectorshep-exAxionsGeneral Physics and AstronomyFOS: Physical sciencesElementary particle physicsInstrumentation and Detectors (physics.ins-det)QC793-793.5HaloscopesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)haloscopesDetectors and Experimental Techniquesphysics.ins-detParticle Physics - Experimentresonant cavities
researchProduct

Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation

2021

Full list of authors: Abdalla, H.; Abe, H.; Acero, F.; Acharyya, A.; Adam, R.; Agudo, I; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Batista, R. Alves; Amati, L.; Amato, E.; Ambrosi, G.; Anguner, E. O.; Araudo, A.; Armstrong, T.; Arqueros, F.; Arrabito, L.; Asano, K.; Ascasibar, Y.; Ashley, M.; Backes, M.; Balazs, C.; Balbo, M.; Balmaverde, B.; Baquero Larriva, A.; Martins, V. Barbosa; Barkov, M.; Baroncelli, L.; de Almeida, U. Barres; Barrio, J. A.; Batista, P-, I; Becerra Gonzalez, J.; Becherini, Y.; Beck, G.; Tjus, J. Becker; Belmont, R.; Benbow, W.; Bernardini, E.; Berti, A.; Berton, M.; Bertucci, B.; Beshley, V; Bi, B.; Biasuzzi, B.; Biland, A.; Bissaldi, …

Gamma ray AstronomyCherenkov Telescope ArrayaxionsMATÉRIA ESCURAredshift: dependenceAstronomyGamma ray experimentsgamma ray experimentsAstrophysics01 natural sciencesCosmologyObservatorycosmological model: parameter spacegamma ray experimentHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysicsCherenkov telescopes ; IACT technique ; Gamma rays ; Cosmic raysnew physics4. EducationSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsGamma-ray astronomyviolation: Lorentz3. Good healthobservatoryExtragalactic background lightastro-ph.COaxion-like particlesFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysicsgamma ray: propagationCosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusAxionsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsinvariance: Lorentzjet: relativisticdark matter: halo0103 physical sciencesactive galactic nuclei; gamma ray experiments; axions; extragalactic magnetic fieldsAGNBlazarbackground010308 nuclear & particles physicsFísicaAstronomy and AstrophysicssensitivityCherenkov Telescope Arrayaxionextragalactic magnetic fieldsactive galactic nuclei[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]absorptionstatisticalBlazarsTelescopes
researchProduct

The Next Generation of Axion Helioscopes: The International Axion Observatory (IAXO)

2015

Çetin, Serkant Ali (Dogus Author) -- Conference full title: 13th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2013; Asilomar Conference Grounds Monterey Peninsula; United States; 8 September 2013 through 13 September 2013. The International Axion Observatory (IAXO) is a proposed 4th-generation axion helioscope with the primary physics research goal to search for solar axions via their Primakoff conversion into photons of 1 - 10 keV energies in a strong magnetic field. IAXO will achieve a sensitivity to the axion-photon coupling gaγ down to a few ×10-12 GeV-1 for a wide range of axion masses up to ∼ 0.25 eV. This is an improvement over the currently best …

QCD axionParticle physicsPhysics::Instrumentation and DetectorsDark matterPhysics and Astronomy(all)01 natural sciences7. Clean energymagnetic helioscopeHigh Energy Physics::TheoryQCD axionsAstroparticle PhysicsAxionObservatory0103 physical sciencesDark matterQCD axions; magnetic helioscope; dark matterDark Matterddc:530Detectors and Experimental Techniques010306 general physicsAxionAstroparticle physicsPhysicsHelioscope010308 nuclear & particles physicsAxion Dark Matter ExperimentHigh Energy Physics::PhenomenologyStrong CP problemIAXOStrong CP ProblemALPStrong CP problemAstroparticle physicsCERN Axion Solar TelescopeParticle Physics - ExperimentHelioscopesPhysics Procedia
researchProduct

Hints of an axion-like particle mixing in the GeV gamma-ray blazar data?

2013

Axion-Like Particles (ALPs), if exist in nature, are expected to mix with photons in the presence of an external magnetic field. The energy range of photons which undergo strong mixing with ALPs depends on the ALP mass, on its coupling with photons as well as on the external magnetic field and particle density configurations. Recent observations of blazars by the Fermi Gamma-Ray Space Telescope in the 0.1-300 GeV energy range show a break in their spectra in the 1-10 GeV range. We have modeled this spectral feature for the flat-spectrum radio quasar 3C454.3 during its November 2010 outburst, assuming that a significant fraction of the gamma rays convert to ALPs in the large scale jet of thi…

AstrofísicaActive galactic nucleusPhotonAxionsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesPartícules (Física nuclear)Spectral lineHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesBlazar010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsActive galactic nucleiRange (particle radiation)Cosmologia010308 nuclear & particles physicsGamma rayAstronomy and AstrophysicsQuasarHigh Energy Physics - Phenomenology13. Climate actionAstrophysics - High Energy Astrophysical PhenomenaFermi Gamma-ray Space TelescopeJournal of Cosmology and Astroparticle Physics
researchProduct

High magnetic fields for fundamental physics

2018

Various fundamental-physics experiments such as measurement of the birefringence of the vacuum, searches for ultralight dark matter (e.g., axions), and precision spectroscopy of complex systems (including exotic atoms containing antimatter constituents) are enabled by high-field magnets. We give an overview of current and future experiments and discuss the state-of-the-art DC- and pulsed-magnet technologies and prospects for future developments.

Astrophysics and AstronomyPhysics - Instrumentation and Detectorsmagnet: designmagnetic field: highAtomic Physics (physics.atom-ph)AxionsDark matterComplex systemOther Fields of PhysicsFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesphysics.atom-phNOPhysics - Atomic PhysicsNuclear physicsPhysics and Astronomy (all)Neutrino mass0103 physical sciencesDark matter[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Axions; Dark matter; High-field magnets; Neutrino mass; Spectroscopy; Vacuum birefringence; Physics and Astronomy (all)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Axionphysics.ins-detSpectroscopyactivity reportExotic atomPhysicsVacuum birefringence010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Polarization (waves)magnet: technology[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]3. Good healthMagnetic fieldHigh-field magnetsAntimatterMagnetAstrophysics - Instrumentation and Methods for Astrophysicsastro-ph.IM
researchProduct