6533b830fe1ef96bd1297b9f

RESEARCH PRODUCT

Overview: On the transport and transformation of pollutants in the outflow of major population centres - Observational data from the EMeRGe European intensive operational period in summer 2017

Katja BiggeAndreas RichterMariano MertensTheresa KlausnerLinlu MeiNikos DaskalakisMarkus KilianMihalis VrekoussisUlrich PlattBruna A. HolandaDavid WalterM. KrebsbachJörg SchmidtMichaël SicardHans SchlagerHelmut ZiereisJohannes SchneiderYangzhuoran LiuAnja SchwarzLisa EirenschmalzMira L. PöhlkerMarco PandolfiGreta StratmannJennifer WolfAnna B. Kalisz HedegaardMonica CampanelliM. Dolores Andrés HernándezPatrick JöckelVladyslav NenakhovVladyslav NenakhovAndreas HilbollHeidi HuntrieserManuel PujadasRalf KoppmannUlrich PöschlEric FörsterKlaus PfeilstickerAndreas ZahnMidhun GeorgeOvid O. KrügerRobert BaumannFrancesca BarnabaUlrich SchumannKatharina KaiserKatharina KaiserChristopher PöhlkerAnne-marlene BlechschmidtBenjamin SchreinerDaniel SauerJosé Luis Gómez-amoStephan BorrmannStephan BorrmannFlora KlugeJohn Phillip BurrowsHarald BönischBirger Bohn

subject

PollutionAtmospheric SciencePollutantsTroposferaMeteorologypo valleyatmospheric transportmedia_common.quotation_subjectTropospheric chemistryPopulationmegacitiesmediterraneanContext (language use)Air -- Pollution -- Measurementddc:550educationairborne measurementsmajor population centresmedia_commoneducation.field_of_studyAire -- Contaminació -- MesuramentVegetationresearch aircraftPollutionMegacitiesAtmospheric polllutionEarth sciencesMegacityFlight planning:Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Teledetecció [Àrees temàtiques de la UPC]Atmospheric chemistryHALOEnvironmental scienceSatellite

description

Megacities and other major population centres (MPCs) worldwide are major sources of air pollution, both locally as well as downwind. The overall assessment and prediction of the impact of MPC pollution on tropospheric chemistry are challenging. The present work provides an overview of the highlights of a major new contribution to the understanding of this issue based on the data and analysis of the EMeRGe (Effect of Megacities on the transport and transformation of pollutants on the Regional to Global scales) international project. EMeRGe focuses on atmospheric chemistry, dynamics, and transport of local and regional pollution originating in MPCs. Airborne measurements, taking advantage of the long range capabilities of the High Altitude and LOng Range Research Aircraft (HALO, https://www.halo-spp.de, last access: 22 March 2022), are a central part of the project. The synergistic use and consistent interpretation of observational data sets of different spatial and temporal resolution (e.g. from ground-based networks, airborne campaigns, and satellite measurements) supported by modelling within EMeRGe provide unique insight to test the current understanding of MPC pollution outflows. In order to obtain an adequate set of measurements at different spatial scales, two field experiments were positioned in time and space to contrast situations when the photochemical transformation of plumes emerging from MPCs is large. These experiments were conducted in summer 2017 over Europe and in the inter-monsoon period over Asia in spring 2018. The intensive observational periods (IOPs) involved HALO airborne measurements of ozone and its precursors, volatile organic compounds, aerosol particles, and related species as well as coordinated ground-based ancillary observations at different sites. Perfluorocarbon (PFC) tracer releases and model forecasts supported the flight planning, the identification of pollution plumes, and the analysis of chemical transformations during transport. This paper describes the experimental deployment and scientific questions of the IOP in Europe. The MPC targets - London (United Kingdom; UK), the Benelux/Ruhr area (Belgium, the Netherlands, Luxembourg and Germany), Paris (France), Rome and the Po Valley (Italy), and Madrid and Barcelona (Spain) - were investigated during seven HALO research flights with an aircraft base in Germany for a total of 53 flight hours. An in-flight comparison of HALO with the collaborating UK-airborne platform Facility for Airborne Atmospheric Measurements (FAAM) took place to assure accuracy and comparability of the instrumentation on board. Overall, EMeRGe unites measurements of near- and far-field emissions and hence deals with complex air masses of local and distant sources. Regional transport of several European MPC outflows was successfully identified and measured. Chemical processing of the MPC emissions was inferred from airborne observations of primary and secondary pollutants and the ratios between species having different chemical lifetimes. Photochemical processing of aerosol and secondary formation or organic acids was evident during the transport of MPC plumes. Urban plumes mix efficiently with natural sources as mineral dust and with biomass burning emissions from vegetation and forest fires. This confirms the importance of wildland fire emissions in Europe and indicates an important but discontinuous contribution to the European emission budget that might be of relevance in the design of efficient mitigation strategies. The present work provides an overview of the most salient results in the European context, with these being addressed in more detail within additional dedicated EMeRGe studies. The deployment and results obtained in Asia will be the subject of separate publications.

10.5194/acp-22-5877-2022https://api.elsevier.com/content/abstract/scopus_id/85129819170