6533b830fe1ef96bd1297c54
RESEARCH PRODUCT
An unbounded family of log Calabi–Yau pairs
Filippo F. FavaleGilberto Binisubject
geography of threefoldSequenceDegree (graph theory)Projective bundleGeneral Mathematics14J30 14J32 14J60CombinatoricsMathematics - Algebraic Geometrysymbols.namesakeMathematics::Algebraic Geometryprojective bundlesIntegerEuler characteristicLog Calabi-Yau pairFOS: MathematicssymbolsCalabi–Yau manifoldSettore MAT/03 - GeometriaAlgebraic Geometry (math.AG)Mathematics::Symplectic GeometryMAT/03 - GEOMETRIAMathematicsdescription
We give an explicit example of log Calabi-Yau pairs that are log canonical and have a linearly decreasing Euler characteristic. This is constructed in terms of a degree two covering of a sequence of blow ups of three dimensional projective bundles over the Segre-Hirzebruch surfaces ${\mathbb F}_n$ for every positive integer $n$ big enough.
year | journal | country | edition | language |
---|---|---|---|---|
2016-08-31 | Rendiconti Lincei - Matematica e Applicazioni |