6533b831fe1ef96bd12984ea
RESEARCH PRODUCT
Reverse screening on indicaxanthin from Opuntia ficus-indica as natural chemoactive and chemopreventive agent
Marco TutoneAnna Maria AlmericoAlessia Virzìsubject
0301 basic medicineStatistics and ProbabilityMolecular dynamicPyridinesKainate receptorIndicaxanthinPhytochemical01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyDocking03 medical and health scienceschemistry.chemical_compoundNeoplasmsGlutamate carboxypeptidase IIData MiningHumansEnzyme InhibitorsMM-GBSAPharmacophore modelingBinding SitesGeneral Immunology and MicrobiologyReverse screening010405 organic chemistryAnti-cancerApplied MathematicsPhosphodiesteraseOpuntiaPhosphoserine phosphataseInositol trisphosphateGeneral MedicineAntineoplastic Agents Phytogenic0104 chemical sciencesBetaxanthinsNeoplasm ProteinsNeuromodulatorMolecular Docking SimulationAnti-inflammatory agent030104 developmental biologychemistryBiochemistryDocking (molecular)Modeling and SimulationPharmacophoreGeneral Agricultural and Biological SciencesIndicaxanthindescription
Indicaxanthin is a bioactive and bioavailable betalain pigment extracted from Opuntia ficus indica fruits. Indicaxanthin has pharmacokinetic proprieties, rarely found in other phytochemicals, and it has been demonstrated that it provides a broad-spectrum of pharmaceutical activity, exerting anti-proliferative, anti-inflammatory, and neuromodulator effects. The discovery of the Indicaxanthin physiological targets plays an important role in understanding the biochemical mechanism. In this study, combined reverse pharmacophore mapping, reverse docking, and text-based database search identified Inositol Trisphosphate 3-Kinase (ITP3K-A), Glutamate carboxypeptidase II (GCPII), Leukotriene-A4 hydrolase (LTA4H), Phosphoserine phosphatase (HPSP), Phosphodiesterase 4D (PDE4D), AMPA receptor (GluA3 and GluA2 subunits) and Kainate receptor (GluK1 isoform) as potential targets for Indicaxanthin. These targets are implicated in neuromodulation, and inflammatory regulation, normally expressed mostly in the CNS, and expressed (or overexpressed) in cancer tissues (i.e. breast, thyroid, and prostate cancer cells). Moreover, this study provides qualitative and quantitative information about dynamic interactions of Indicaxanthin at the binding site of target proteins, through molecular dynamics simulations and MM-GBSA.
year | journal | country | edition | language |
---|---|---|---|---|
2018-10-01 |