6533b831fe1ef96bd1298583
RESEARCH PRODUCT
Initial state description of azimuthally collimated long range correlations in ultrarelativistic light-heavy ion collisions
Mark MaceVladimir V. SkokovPrithwish TribedyRaju Venugopalansubject
Nuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Nuclear TheoryFOS: Physical sciencesNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experimentdescription
It was argued in arXiv:1805.09342 and arXiv:1807.00825 that the systematics of the azimuthal anisotropy coefficients $v_{2,3}$ measured in ultrarelativistic light-heavy ion collisions at RHIC and the LHC can be described in an initial state dilute-dense Color Glass Condensate (CGC) framework. We elaborate here on the discussion in these papers and provide further novel results that strengthen their conclusions. The underlying mathematical framework and numerical techniques employed are very similar to those in the CGC based IP-Glasma model used previously as initial conditions for heavy-ion collisions. The uncertainties in theory/data comparisons for small systems are discussed, with unknowns that are specific to the model distinguished from those that are generic to all models. We present analytical arguments that demonstrate that quantum interference effects such as Bose enhancement and Hanbury-Brown-Twiss correlations of gluons, as well as coherent multiple scattering of gluons in the projectile off color domains in the target, are enhanced in rare events. The quantum origins of the large anisotropies in small systems are corroborated by numerical results for deuteron-gold collisions that show that large anisotropies in rare configurations can occur when the nucleons in the projectile overlap significantly. This is at variance with the classical intuition of hydrodynamical models. We also comment on the consequences of ignoring the many-body color charge correlations of gluons in models that only consider geometrical fluctuations in the energy density.
year | journal | country | edition | language |
---|---|---|---|---|
2019-01-29 |