6533b831fe1ef96bd129865e

RESEARCH PRODUCT

Spin-Crossover and Liquid Crystal Properties in 2D Cyanide-Bridged FeII−MI/II Metalorganic Frameworks

Françoise VillainAna B. GasparYury G. GalyametdinovMichel VerdaguerPhilipp GütlichVadim KsenofontovMaksym Seredyuk

subject

CyanidesMolecular StructureExtended X-ray absorption fine structure010405 organic chemistrySpin transitionStereoisomerismLigands010402 general chemistry01 natural sciencesMagnetic susceptibilityLiquid Crystals0104 chemical sciences3. Good healthInorganic ChemistryCrystallographychemistry.chemical_compoundchemistryLiquid crystalSpin crossoverMetals HeavyMössbauer spectroscopyPyridineOrganometallic CompoundsPhysical and Theoretical ChemistryPowder diffraction

description

Novel two-dimensional heterometallic Fe(II)-M(Ni(II), Pd(II), Pt(II), Ag(I), and Au(I)) cyanide-bridged metalorganic frameworks exhibiting spin-crossover and liquid crystal properties, formulated as {FeL(2)[M(I/II)(CN)(x)](y)}·sH(2)O, where L are the ligands 4-(4-alkoxyphenyl)pyridine, 4-(3,4-dialkoxyphenyl)pyridine, and 4-(3,4,5-trisalkoxyphenyl)pyridine, have been synthesized and characterized. The physical characterization has been carried out by means of EXAFS, X-ray powder diffraction, magnetic susceptibility, differential scanning measurements, and Mössbauer spectroscopy. The 2D Fe(II) metallomesogens undergo incomplete and continuous thermally induced spin transition at T(1/2) ≈ 170 K and crystal-to-smectic transition above 370 K.

https://doi.org/10.1021/ic101304v