6533b831fe1ef96bd12986b0

RESEARCH PRODUCT

Performance of a RED system with ammonium hydrogen carbonate solutions

A. CarubiaGdm MicaleAndrea CipollinaMichele TedescoAlessandro TamburiniM. Bevacqua

subject

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti ChimiciMechanical engineeringSalt (chemistry)Ocean Engineering02 engineering and technology010501 environmental sciences7. Clean energy01 natural sciencesHeat-to-powerPhase (matter)Waste heatReversed electrodialysisReverse electrodialysiOsmotic powerSalinity gradient powerProcess engineeringAmmonium hydrogen carbonate0105 earth and related environmental sciencesWater Science and Technologychemistry.chemical_classificationSettore ING-IND/24 - Principi Di Ingegneria Chimicabusiness.industry021001 nanoscience & nanotechnologyPollution6. Clean waterPower (physics)Reverse Electrodialysis Salinity Gradient Power SGP heat engine Waste heat Ammonium hydrogen carbonateElectricity generationchemistryScientific method0210 nano-technologybusinessAmmonium hydrogen carbonate; Heat engine; Heat-to-power; Reverse electrodialysis; Salinity gradient powerHeat engine

description

The use of closed-loop salinity gradient power (SGP) technologies has been recently presented as a viable option to generate power using low-grade heat, by coupling a SGP unit with a thermally-driven regeneration process in a closed loop where artificial solutions can be adopted for the conversion of heat into power. Among these, the closed-loop reverse electrodialysis (RED) process presents a number of advantages such as the direct production of electricity, the extreme flexibility in operating conditions and the recently demonstrated large potentials for industrial scale-up. Ammonium hydrogen carbonate (NH4HCO3) is a salt suitable for such closed-loop RED process thanks to its particular properties. At temperatures above 40–45°C, it decomposes into a gaseous phase containing NH3, CO2 and water. Thus, the use of NH4HCO3 solutions for feeding a RED unit would allow their easy regeneration (after the power generation step) just using low-temperature waste heat in a purposely designed regeneration unit. This work aims at presenting an experimental investigation performed on a RED system fed with NH4HCO3 solutions. Laboratory tests were carried out to find the best conditions for maximizing the power density and process performances of a RED unit by investigating a number of operating parameters such as fluid velocity and feed solutions concentration.

10.1080/19443994.2015.1126410http://www.tandfonline.com/toc/tdwt20/current