6533b831fe1ef96bd1298e1d
RESEARCH PRODUCT
New heterogeneous catalysts for greener routes in the synthesis of fine chemicals
Georgeta PopPedro AmorósCristina StereVasile I. ParvulescuDaniel BeltránJamal El HaskouriSimona M. Comansubject
Green chemistryAcylationchemistry.chemical_compoundAtranechemistryOrganic chemistryLewis acids and basesPhysical and Theoretical ChemistryMesoporous materialHeterogeneous catalysisTriflic acidCatalysisCatalysisdescription
Abstract New strong Lewis acid SnTf-MCM-41 and SnTf-UVM-7 catalysts with unimodal and bimodal pore systems were prepared in a two-step synthesis in which the triflic acid (Tf) was incorporated to previously synthesized mesoporous tin-containing silicas. The Sn incorporation inside the pore walls was carried out through the Atrane method. The SnTf-UVM-7 catalysts were prepared by aggregating nanometric mesoporous particles defining a hierarchic textural-type additional pore system. Following these procedures, catalysts with different Si/Sn ratios—21.8 to 50.8 for SnTf-MCM-41 and 18.4 for SnTf-UVM-7—were prepared. These new materials were tested in the acylation of aromatic sulfonamides using acetic acid as the acylating agent and in the synthesis of (dl)-[α]-tocopherol through the condensation of 2,3,6-trimethylhydroquinone (TMHQ) with isophytol (IP). The activity data indicate that these heterogeneous catalysts are very active, corresponding to high yields in acylated compounds as 65.5% and very high selectivity to (dl)-[α]-tocopherol (94%, for a conversion of 98%).
year | journal | country | edition | language |
---|---|---|---|---|
2007-10-25 | Journal of Catalysis |