6533b831fe1ef96bd1298e45
RESEARCH PRODUCT
Knockdown of hnRNPK leads to increased DNA damage after irradiation and reduces survival of tumor cells.
Carina BeckIrene SchmidtmannNadine WiesmannNadine ZimmermannSimone MendlerJürgen BriegerJudith StrozynskiRita Gieringersubject
0301 basic medicineCancer ResearchDNA damageCell Survivalmedicine.medical_treatmentmedicine.disease_causeRadiation ToleranceHeterogeneous-Nuclear Ribonucleoprotein KHistones03 medical and health sciences0302 clinical medicineCell Line TumormedicineCarcinomaGene Knockdown TechniquesHumansMutationGene knockdownChemistrySquamous Cell Carcinoma of Head and NeckStem CellsGeneral Medicinemedicine.diseaseHead and neck squamous-cell carcinomaRadiation therapy030104 developmental biologyCell cultureHead and Neck Neoplasms030220 oncology & carcinogenesisGene Knockdown TechniquesCancer researchCarcinoma Squamous CellTumor Suppressor Protein p53DNA Damagedescription
Radiotherapy is an important treatment option in the therapy of multiple tumor entities among them head and neck squamous cell carcinoma (HNSCC). However, the success of radiotherapy is limited by the development of radiation resistances. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is a cofactor of p53 and represents a potential target for radio sensitization of tumor cells. In this study, we analyzed the impact of hnRNPK on the DNA damage response after gamma irradiation. By yH2AX foci analysis, we found that hnRNPK knockdown increases DNA damage levels in irradiated cells. Tumor cells bearing a p53 mutation showed increased damage levels and delayed repair. Knockdown of hnRNPK applied simultaneously with irradiation reduced colony-forming ability and survival of tumor cells. Taken together, our data shows that hnRNPK is a relevant modifier of DNA damage repair and tumor cell survival. We therefore recommend further studies to evaluate the potential of hnRNPK as a drug target for improvement of radiotherapy success.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-25 | Carcinogenesis |