6533b831fe1ef96bd1299104

RESEARCH PRODUCT

In a randomized trial in prostate cancer patients, dietary protein restriction modifies markers of leptin and insulin signaling in plasma extracellular vesicles

Dimitrios KapogiannisSean T. BerkowitzSophia M. RaefskyCaitlin N. SuireErez EitanMaja MustapićFrancesco SpeltaFrancesco SpeltaLuigi FontanaLuigi FontanaValeria TostiRyan SpanglerBeatrice BertozziNicola VeroneseNicola VeroneseMark P. MattsonMark P. MattsonEdda Cava

subject

LeptinMale0301 basic medicineAgingmedicine.medical_specialtyhyperleptinemiamedicine.medical_treatmentexosomesBiologymetabolic syndrome03 medical and health sciencesProstate cancer0302 clinical medicineInternal medicineDiet Protein-RestrictedmedicineHumansInsulinprotein restrictionexosomes; extracellular vesicles; IRS-1; leptin receptor; prostate cancer; protein restriction; Aging; Cell BiologyObesityIRS-1leptin receptorIRS-1; exosomes; extracellular vesicles; leptin receptor; prostate cancer; protein restrictionIRS‐1Caloric RestrictionShort TakesLeptin receptorLeptinInsulinProstatic NeoplasmsShort TakeCell BiologyMiddle Agedprostate cancermedicine.diseaseObesity3. Good healthIRS1Insulin receptor030104 developmental biologyEndocrinologybiology.proteinMetabolic syndromeEnergy Metabolismextracellular vesicles030217 neurology & neurosurgeryage-associated disease

description

Obesity, metabolic syndrome, and hyperleptinemia are associated with aging and age-associated diseases including prostate cancer. One experimental approach to inhibit tumor growth is to reduce dietary protein intake and hence levels of circulating amino acids. Dietary protein restriction (PR) increases insulin sensitivity and suppresses prostate cancer cell tumor growth in animal models, providing a rationale for clinical trials. We sought to demonstrate that biomarkers derived from plasma extracellular vesicles (EVs) reflect systemic leptin and insulin signaling and respond to dietary interventions. We studied plasma samples from men with prostate cancer awaiting prostatectomy who participated in a randomized trial of one month of PR or control diet. We found increased levels of leptin receptor in the PR group in total plasma EVs and in a subpopulation of plasma EVs expressing the neuronal marker L1CAM. Protein restriction also shifted the phosphorylation status of the insulin receptor signal transducer protein IRS1 in L1CAM+ EVs in a manner suggestive of improved insulin sensitivity. Dietary PR modifies indicators of leptin and insulin signaling in circulating EVs. These findings are consistent with improved insulin and leptin sensitivity in response to PR and open a new window for following physiologic responses to dietary interventions in humans. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

10.1111/acel.12657http://hdl.handle.net/10447/460411