6533b831fe1ef96bd12991d7
RESEARCH PRODUCT
Low-rank approximation based non-negative multi-way array decomposition on event-related potentials
Fengyu CongGuoxu ZhouPiia AstikainenQibin ZhaoQiang WuAsoke NandiJari K. HietanenTapani RistaniemiAndrzej Cichockisubject
low-rank approximationEvent-related potentialtensor decompositionnon-negative tensor factorizationmulti-domain featurenon-negative canonical polyadic decompositiondescription
Non-negative tensor factorization (NTF) has been successfully applied to analyze event-related potentials (ERPs), and shown superiority in terms of capturing multi-domain features. However, the time-frequency representation of ERPs by higher-order tensors are usually large-scale, which prevents the popularity of most tensor factorization algorithms. To overcome this issue, we introduce a non-negative canonical polyadic decomposition (NCPD) based on low-rank approximation (LRA) and hierarchical alternating least square (HALS) techniques. We applied NCPD (LRAHALS and benchmark HALS) and CPD to extract multi-domain features of a visual ERP. The features and components extracted by LRAHALS NCPD and HALS NCPD were very similar, but LRAHALS NCPD was 70 times faster than HALS NCPD. Moreover, the desired multi-domain feature of the ERP by NCPD showed a significant group difference (control versus depressed participants) and a difference in emotion processing (fearful versus happy faces). This was more satisfactory than that by CPD, which revealed only a group difference. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2014-01-01 |