6533b831fe1ef96bd1299b1c

RESEARCH PRODUCT

An experimental and modeling study of the oxidation of 3-pentanol at high pressure

Philippe DagautGuillaume DaymaGuillaume DaymaMaxime CarbonnierMaxime CarbonnierLuis Le MoyneZeynep SerinyelZeynep SerinyelAlan KeromnesBenoîte Lefort

subject

Jet-stirred reactorMaterials science020209 energyGeneral Chemical EngineeringAnalytical chemistrychemistry.chemical_element02 engineering and technologyMole fraction7. Clean energylaw.invention020401 chemical engineeringKinetics modelinglawignition0202 electrical engineering electronic engineering information engineering0204 chemical engineeringPhysical and Theoretical ChemistryFourier transform infrared spectroscopyShock tubeOlefin fiberArgon[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environmentMechanical Engineering3-pentanolAtmospheric temperature rangeIgnition systemchemistryShock tubeGas chromatography

description

International audience; High pressure oxidation of 3-pentanol is investigated in a jet-stirred reactor and in a shock tube. Experiments in the reactor were carried out at 10 atm, between 730 and 1180 K, for equivalence ratios of 0.35, 0.5, 1, 2, 4 and 1000 ppm fuel, at a constant residence time of 0.7 s. Reactant, product and intermediate species mole fractions were recorded using Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC). Ignition delay times were measured for 3-pentanol/O2 mixtures in argon in a shock tube at 20 and 40 bar, in a temperature range of 1000–1470 K and for equivalence ratios of 0.5, 1 and 2. The fuel did not show any low-temperature reactivity under these conditions in neither experimental set-up and produced various aldehydes and ketones as well as the olefin 2-pentene as intermediates. A kinetic sub-mechanism is developed in order to represent the present data and analyze the reaction pathways.

https://doi.org/10.1016/j.proci.2018.07.114