Search results for "3-pentanol"

showing 3 items of 3 documents

An experimental and modeling study of the oxidation of 3-pentanol at high pressure

2019

International audience; High pressure oxidation of 3-pentanol is investigated in a jet-stirred reactor and in a shock tube. Experiments in the reactor were carried out at 10 atm, between 730 and 1180 K, for equivalence ratios of 0.35, 0.5, 1, 2, 4 and 1000 ppm fuel, at a constant residence time of 0.7 s. Reactant, product and intermediate species mole fractions were recorded using Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC). Ignition delay times were measured for 3-pentanol/O2 mixtures in argon in a shock tube at 20 and 40 bar, in a temperature range of 1000–1470 K and for equivalence ratios of 0.5, 1 and 2. The fuel did not show any low-temperature reactivity…

Jet-stirred reactorMaterials science020209 energyGeneral Chemical EngineeringAnalytical chemistrychemistry.chemical_element02 engineering and technologyMole fraction7. Clean energylaw.invention020401 chemical engineeringKinetics modelinglawignition0202 electrical engineering electronic engineering information engineering0204 chemical engineeringPhysical and Theoretical ChemistryFourier transform infrared spectroscopyShock tubeOlefin fiberArgon[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environmentMechanical Engineering3-pentanolAtmospheric temperature rangeIgnition systemchemistryShock tubeGas chromatographyProceedings of the Combustion Institute
researchProduct

An experimental and modelling study of the oxidation of 3-pentanol at high pressure

2018

International audience; High pressure oxidation of 3-pentanol is investigated in a jet-stirred reactor and in a shock tube. Experiments in the reactor were carried out at 10 atm, between 730 and 1180 K, for equivalence ratios of 0.35, 0.5, 1, 2, 4 and 1000 ppm fuel, at a constant residence time of 0.7 s. Reactant, product and intermediate species mole fractions were recorded using Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC). Ignition delay times were measured for 3-pentanol/O2 mixtures in argon in a shock tube at 20 and 40 bar, in a temperature range of 1000–1470 K and for equivalence ratios of 0.5, 1 and 2. The fuel did not show any low-temperature reactivity…

[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryKinetics[SPI]Engineering Sciences [physics][CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistrypentanoljet-stirred reactor[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environmentignitionShock tube[SPI.FLUID] Engineering Sciences [physics]/Reactive fluid environment3-pentanolkinetic modeling
researchProduct

Phase Equilibria in the Binary and Ternary Systems Composed of Diethyl Ketone, 2-Pentanone, and 3-Pentanol at 101.3 kPa

2003

New vapor−liquid equilibrium data for the binary systems diethyl ketone + 2-pentanone, diethyl ketone + 3-pentanol and 2-pentanone + 3-pentanol and for the diethyl ketone + 2-pentanone + 3-pentanol ternary system are reported at 101.3 kPa. The data were found to be thermodynamically consistent according to the Van Ness−Byer−Gibbs method for the binary systems and according to the McDermott−Ellis method for the ternary one. The experimental results show that the diethyl ketone + 2-pentanone system is well represented by assuming ideal behavior. The other binary systems exhibit slight positive deviations from ideality, and no azeotrope is present. The VLE data have been correlated with the Wi…

chemistry.chemical_classification3-PentanolTernary numeral systemKetoneUNIQUACGeneral Chemical Engineering2-PentanoneThermodynamicsGeneral Chemistrychemistry.chemical_compoundchemistryAzeotropeNon-random two-liquid modelTernary operationJournal of Chemical & Engineering Data
researchProduct