6533b832fe1ef96bd129a2ea
RESEARCH PRODUCT
Fluorescence excitation and emission spectroscopy on single MEH-PPV chains at low temperature.
Thomas BaschéFlorian A. Feistsubject
chemistry.chemical_classificationSpectral shape analysisMolecular massAnalytical chemistryAstrophysics::Cosmology and Extragalactic AstrophysicsPolymerChromophoreFluorescenceSurfaces Coatings and FilmschemistryMaterials ChemistryMoleculeEmission spectrumPhysical and Theoretical ChemistryAstrophysics::Galaxy AstrophysicsExcitationdescription
Fluorescence emission and excitation spectra of single MEH-PPV polymer molecules dispersed in thin PMMA films have been recorded at 1.2 and 20 K. We observe single as well as multichromophore emission in single chain emission spectra, whereby the relative fractions depend on the two different molecular weights (50 and 350 kDa) studied. The molecular weight also affects the distribution of peak emission maxima, which is monomodal (bimodal) for the low (high) molecular weight. The appearance of an additional "red" subpopulation for the high molecular weight sample is attributed to interactions of multiple chromophores from a sufficiently flexible single chain. The comparison of emission spectra appearing in the "blue" as well as "red" subpopulations suggests that these intrachain interactions rather lead to ground-state aggregates than excimers. Independent of the molecular weight, large variations in spectral shape and apparent line width in the emission spectra have been observed. Occasionally, we find very narrow purely electronic zero-phonon lines both in emission and in excitation spectra, with line widths down to the instrumental resolution. In accordance with earlier literature data it is argued that linear electron-phonon coupling should be quite strong for MEH-PPV in PMMA, leading to only a small fraction of chromophores exhibiting zero-phonon lines. In addition, spectral diffusion, which manifests itself by several time-dependent line shifting and broadening phenomena, contributes to the substantial variations of spectral shapes. Excitation experiments with particularly stable chromophores provide an upper limit for the optical line width (approximately 0.1 cm(-1)), which at 1.2 K can actually approach the lifetime-limited homogeneous width. Raising the temperature to 20 K leads to line broadening and typically, to disappearance of zero-phonon lines. The failure to observe zero-phonon lines of chromophores supposedly serving as donors in intramolecular energy transfer is tentatively attributed to fast transfer rates, resulting in strongly broadened lines which escape detection even at 1.2 K.
year | journal | country | edition | language |
---|---|---|---|---|
2008-07-23 | The journal of physical chemistry. B |