6533b832fe1ef96bd129acbf
RESEARCH PRODUCT
Three-Dimensional Core-Collapse Supernova Simulations with Multi-Dimensional Neutrino Transport Compared to the Ray-by-Ray-plus Approximation
Robert GlasRobert GlasH.-thomas JankaMartin ObergaulingerMartin ObergaulingerOliver Justsubject
ConvectionPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010504 meteorology & atmospheric sciencesAccretion (meteorology)Astrophysics::High Energy Astrophysical PhenomenaRotational symmetryFOS: Physical sciencesAstronomy and AstrophysicsType II supernova01 natural sciencesInstabilitySymmetry (physics)Computational physicsSupernovaSpace and Planetary Science0103 physical sciencesNeutrinoAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics0105 earth and related environmental sciencesdescription
Self-consistent, time-dependent supernova (SN) simulations in three spatial dimensions (3D) are conducted with the Aenus-Alcar code, comparing, for the first time, calculations with fully multi-dimensional (FMD) neutrino transport and the ray-by-ray-plus (RbR+) approximation, both based on a two-moment solver with algebraic M1 closure. We find good agreement between 3D results with FMD and RbR+ transport for both tested grid resolutions in the cases of a 20 solar-mass progenitor, which does not explode with the employed simplified set of neutrino opacities, and of an exploding 9 solar-mass model. This is in stark contrast to corresponding axisymmetric (2D) simulations, which confirm previous claims that the RbR+ approximation can foster explosions in 2D in particular in models with powerful axial sloshing of the stalled shock due to the standing accretion shock instability (SASI). However, while local and instantaneous variations of neutrino fluxes and heating rates can still be considerably higher with RbR+ transport in 3D, the time-averaged quantities are very similar to FMD results because of the absence of a fixed, artificial symmetry axis that channels the flow. Therefore, except for stochastic fluctuations, the neutrino signals and the post-bounce evolution of 3D simulations with FMD and RbR+ transport are also very similar, in particular for our calculations with the better grid resolution. Higher spatial resolution has clearly a more important impact than the differences by the two transport treatments. Our results back up the use of the RbR+ approximation for neutrino transport in 3D SN modeling.
year | journal | country | edition | language |
---|---|---|---|---|
2018-09-26 |