6533b832fe1ef96bd129ad45
RESEARCH PRODUCT
Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country
Michael PapapetrouGiorgio MicaleUmberto La CommareGeorge KosmadakisAndrea Cipollinasubject
Resource (biology)020209 energyTemperature levelEnergy Engineering and Power TechnologyAvailable resource; Energy efficiency; Heat consumption; Industry; Recovery; Temperature level; Waste heat; Waste heat fraction; Energy Engineering and Power Technology; Industrial and Manufacturing Engineering02 engineering and technology7. Clean energyIndustrial and Manufacturing EngineeringIndustrial wasteRecoveryAvailable resourceWaste heatHeat recovery ventilation0202 electrical engineering electronic engineering information engineeringIndustryWaste heat fractionSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneWaste managementHeat consumptionEnergy efficiencyWork (electrical)Energy intensitySecondary sector of the economyEnvironmental scienceWaste heatEfficient energy usedescription
Abstract Industrial waste heat is examined in EU countries, focusing on the amount that can be recovered and exploited, referred to as technical potential of waste heat. An alternative methodology is proposed here, which is based on waste heat fractions derived from a detailed study of the UK industry from the period 2000–2003. These fractions express the part of heat consumption that is wasted and is possible to be recovered. The waste heat fractions have been calculated in this work for each main industrial sector and temperature level. The methodology initially includes the adjustment of waste heat fractions from each industrial sector from the UK industry to the conditions of the different EU countries in the period 2000–2003, in order to account for the different levels of energy efficiency. The second step is to adjust the fractions for the year 2015, using data about the evolution of energy intensity values from 2000 to 2003 to 2015 for each country and sector, resulting to a new set of fractions per country, temperature level and sector. This methodology has enabled the authors to study in detail the waste heat potential per sector and temperature level, using the most recent data. The main outcome is the estimation of waste heat potential for each main industrial sector in the EU, broken down to the amount of waste heat for each temperature range. A similar analysis is conducted for each EU country as well, in order to identify the magnitude of heat recovery opportunities that could exist for every industrial sector at country level. The main result of this analysis is the estimation of the total waste heat potential in EU, which is about 300 TWh/year, with one third corresponding to temperature level below 200 °C, which is often referred to as low-temperature waste heat, another 25% in the range 200–500 °C and the rest above 500 °C (mostly in the range 500–1000 °C). The findings of the current study can be used for assessing the potential of any relevant heat recovery applications, such as heat upgrade and re-use or heat-to-power conversion technologies.
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-01 | Applied Thermal Engineering |