Assessment of methodologies and data used to calculate desalination costs
Abstract In desalination, similarly with other industries, the cost of the final product is one of the most important criteria that define the commercial success of a specific technology. Therefore, when new projects are planned or new technologies are proposed, the analysis of the expected costs attracts a lot of attention and is compared to (perceived) costs of state-of-the-art desalination or costs of alternative fresh water supply options. This comparison only makes sense if the cost assessment methodologies are based on the same principles and use common assumptions. This paper assesses: (i) the methodologies used to calculate the water cost; (ii) the boundary conditions and (iii) the …
Towards the first proof of the concept of a Reverse ElectroDialysis - Membrane Distillation Heat Engine
Abstract The coupling of Reverse Electrodialysis with Membrane Distillation is a promising option for the conversion of waste heat into electricity. This study evaluates the performances of the integrated system under different operating conditions, employing validated model and correlations. This work provides a detailed description of the behaviour of a real RED-MD heat engine and indicates the set of inlet concentrations, velocities and equipment size which returns the highest cycle exergy efficiency. These operating conditions were selected for the pilot plant developed within the EU-funded project RED Heat to Power. For the first time, a perspective analysis was also included, consider…
Reverse electrodialysis heat engine for sustainable power production
Abstract Reverse Electrodialysis Heat Engine (REDHE) is a promising technology to convert waste heat at temperatures lower than 100 °C into electric power. In the present work an overview of the possible regeneration methods is presented and the technological challenges for the development of the RED Heat Engine (REDHE) are identified. The potential of this power production cycle was investigated through a simplified mathematical model. In the first part of the work, several salts were singularly modelled as possible solutes in aqueous solutions feeding the RED unit and the corresponding optimal conditions were recognized via an optimization study. In the second part, three different RED He…
Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment
Abstract Salinity gradients are a non-conventional source of renewable energy based on the recovery of the Gibbs free energy related to the mixing of solutions at different concentrations. Reverse Electrodialysis is a promising and innovative technology able to convert this energy directly into electric current. The worldwide availability of salinity gradients is limited to those locations where water bodies at different salinity levels are present. The present work analyses a number of different scenarios worldwide, in locations where salinity gradients are naturally available or generated by anthropogenic activities. A techno-economic model of the Reverse Electrodialysis process is presen…
Quantifying the Potential Economic Benefits of Flexible Industrial Demand in the European Power System
The envisaged decarbonization of the European power system introduces complex techno-economic challenges to its operation and development. Demand flexibility can significantly contribute in addressing these challenges and enable a cost-effective transition to the low-carbon future. Although extensive previous work has analyzed the impacts of residential and commercial demand flexibility, the respective potential of the industrial sector has not yet been thoroughly investigated despite its large size. This paper presents a novel, whole-system modeling framework to comprehensively quantify the potential economic benefits of flexible industrial demand (FID) for the European power system. This …
Reverse Electrodialysis: Applications to Different Case Studies
Salinity gradient is a non-conventional renewable energy form which is widely available worldwide. Reverse Electrodialysis is a promising and innovative technology able to convert directly this chemical renewable energy into electricity. This paper presents a number of different scenarios where salinity gradients are naturally available or they result from industrial/urban activities. A sophisticated model accounting for all the main phenomena (including all the detrimental ones) occurring within a Reverse Electrodialysis unit has been purposely developed. The model is used to calculate how much electric energy can be harvested from the above-mentioned salinity gradients.
Salinity gradient engines
Abstract This chapter is devoted to the description of a new class of heat engines based on salinity gradient technology and able to convert low-grade heat into power. The salinity gradient power (SGP) process is employed within a closed loop composed of two different sections: (i) the SGP unit devoted to the energy production, and (ii) a regeneration unit fed by the solutions exiting from the SGP unit and able to restore the initial concentration, thus regenerating the salinity gradient. The main features, limits and perspectives of this novel heat engine are described along with an overview of the state of the art presented in the literature and an example of exergetic analysis of the cyc…
Reverse electrodialysis with NH4HCO3-water systems for heat-to-power conversion
Abstract A Reverse ElectroDialysis Heat Engine (REDHE) system operating with “thermolytic” ammonium hydrogen-carbonate (NH4HCO3) aqueous solutions as working fluids is studied. The engine is constituted by (i) a RED unit to produce electric power by mixing the solutions at different salinity and (ii) a thermally-driven regeneration unit including a stripping and an absorption column to restore the initial salinity gradient thus closing the cycle. In the present work only the RED unit and the stripping column are taken into account. In particular, a simplified integrated process model for the whole cycle was developed: it consists of (i) a lumped parameter model for the RED unit validated wi…
Boosting the performance of a Reverse Electrodialysis – Multi-Effect Distillation Heat Engine by novel solutions and operating conditions
Abstract This work presents a performance analysis of a waste-heat-to-power Reverse Electrodialysis Heat Engine (RED-HE) with a Multi-Effect Distillation (MED) unit as the regeneration stage. The performance of the system is comparatively evaluated using two different salts, sodium chloride and potassium acetate, and investigating the impact of different working solutions concentration and temperature in the RED unit. For both salt solutions, the impact of membrane properties on the system efficiency is analysed by considering reference ionic exchange membranes and high-performing membranes. Detailed mathematical models for the RED and MED units have been used to predict the thermal efficie…
Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country
Abstract Industrial waste heat is examined in EU countries, focusing on the amount that can be recovered and exploited, referred to as technical potential of waste heat. An alternative methodology is proposed here, which is based on waste heat fractions derived from a detailed study of the UK industry from the period 2000–2003. These fractions express the part of heat consumption that is wasted and is possible to be recovered. The waste heat fractions have been calculated in this work for each main industrial sector and temperature level. The methodology initially includes the adjustment of waste heat fractions from each industrial sector from the UK industry to the conditions of the differ…
Analysis and simulation of scale-up potentials in reverse electrodialysis
The Reverse Electrodialysis (RED) process has been widely accepted as a viable and promising technology to produce electric energy from salinity difference (salinity gradient power - e.g. using river water/seawater, or seawater and concentrated brines). Recent R&D efforts demonstrated how an appropriate design of the RED unit and a suitable selection of process conditions may crucially enhance the process performance. With this regard, a process simulator was developed and validated with experimental data collected on a lab-scale unit, providing a new modelling tool for process optimisation. In this work, performed within the REAPower project (www.reapower.eu), a process simulator previousl…
REAPOWER – USE OF DESALINATION BRINE FOR POWER PRODUCTION THROUGH REVERSE ELECTRODIALYSIS
Salinity gradient power (SGP) represents a viable renewable energy source associated with the mixing of two solutions of different salinities. Reverse electrodialysis (SGP-RE or RED) is a promising technology to exploit this energy source and directly generate electricity. However, although the principle of this technology is well known since several years, further R&D efforts are still necessary in order to explore the real potential of the SGP-RE process. With this regard, the aim of the REAPower project ( [GRAPHICS] ) is the development of an innovative system for power production by SGP-RE process, using sea (or brackish) water as a diluted solution and brine as a concentrate. The use o…
Reverse electrodialysis heat-engine: Case studies of improving energy efficiency through recovery of low temperature excess heat
Reverse Electrodialysis (RED) is a technology for generating electricity from the difference in salinity between two solutions. RED is usually applied to natural water streams with different salinities, like seawater vs. freshwater. In the RED Heat-to-Power project we explore the option of using artificial water solutions operating in a closed loop where the difference in salinity is regenerated in a separation step powered by heat at temperature ranges between 60 and 100°C. We call this system Reverse Electrodialysis Heat Engine (RED HE). In this paper, first we summarise the possible system configurations and the overall amount of excess heat available in Europe for powering the RED HE pr…
Evaluation of the Economic and Environmental Performance of Low-Temperature Heat to Power Conversion using a Reverse Electrodialysis – Multi-Effect Distillation System
In the examined heat engine, reverse electrodialysis (RED) is used to generate electricity from the salinity difference between two artificial solutions. The salinity gradient is restored through a multi-effect distillation system (MED) powered by low-temperature waste heat at 100 °C. The current work presents the first comprehensive economic and environmental analysis of this advanced concept, when varying the number of MED effects, the system sizing, the salt of the solutions, and other key parameters. The levelized cost of electricity (LCOE) has been calculated, showing that competitive solutions can be reached only when the system is at least medium to large scale. The lowest LCOE, at a…
Correlations for estimating the specific capital cost of multi-effect distillation plants considering the main design trends and operating conditions
Abstract This work proposes a correlation for the specific capital cost of multi-effect distillation (MED) plants, considering their main design options and parameters, such as the number of effects, size/capacity, and heat source temperature. These parameters are varied within a large range to cover as many different cases as possible. The cost correlation decouples the evaporator cost and includes in the expression the ratio of the heat exchanger area to a reference one. This area is calculated using a validated MED numerical model, with the results then processed to produce fitted expressions. Two versions of this correlation with different levels of complexity are proposed, which provid…
Data for: Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country
Waste heat fractions for 2015 calculated per industrial sector, per temperature level and per EU country.