6533b832fe1ef96bd129ad91

RESEARCH PRODUCT

The galaxy power spectrum take on spatial curvature and cosmic concordance

Joseph SilkJoseph SilkJoseph SilkS. GariazzoS. GariazzoOlga MenaAlessandro MelchiorriSunny VagnozziEleonora Di ValentinoEleonora Di Valentino

subject

Planckcosmological modelCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectCosmological parametersSpatial curvatureDark matterCosmic microwave backgroundCosmic background radiationFOS: Physical sciencesanisotropycosmic background radiationAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)power spectrumCurvature01 natural sciencesGeneral Relativity and Quantum Cosmologydark matterCosmologyacousticsymbols.namesake0103 physical sciencesPlanck010303 astronomy & astrophysicsmedia_commonPhysics[PHYS.GRQC] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]010308 nuclear & particles physicstemperatureAstronomy and AstrophysicsoscillationtensionUniverseGalaxybaryonCosmological tensionsSpace and Planetary Sciencecurvature[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]symbolsgalaxy[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysics

description

The concordance of the $\Lambda$CDM cosmological model in light of current observations has been the subject of an intense debate in recent months. The 2018 Planck Cosmic Microwave Background (CMB) temperature anisotropy power spectrum measurements appear at face value to favour a spatially closed Universe with curvature parameter $\Omega_K<0$. This preference disappears if Baryon Acoustic Oscillation (BAO) measurements are combined with Planck data to break the geometrical degeneracy, although the reliability of this combination has been questioned due to the strong tension present between the two datasets when assuming a curved Universe. Here, we approach this issue from yet another point of view, using measurements of the full-shape (FS) galaxy power spectrum, $P(k)$, from the Baryon Oscillation Spectroscopic Survey DR12 CMASS sample. By combining Planck data with FS measurements, we break the geometrical degeneracy and find $\Omega_K=0.0023 \pm 0.0028$. This constrains the Universe to be spatially flat to sub-percent precision, in excellent agreement with results obtained using BAO measurements. However, as with BAO, the overall increase in the best-fit $\chi^2$ suggests a similar level of tension between Planck and $P(k)$ under the assumption of a curved Universe. While the debate on spatial curvature and the concordance between cosmological datasets remains open, our results provide new perspectives on the issue, highlighting the crucial role of FS measurements in the era of precision cosmology.

10.1016/j.dark.2021.100851http://dx.doi.org/10.1016/j.dark.2021.100851