0000000000543346

AUTHOR

Joseph Silk

Observables sensitive to absolute neutrino masses. II

In this followup to Phys. Rev. D 75, 053001 (2007) [arXiv:hep-ph/0608060] we report updated constraints on neutrino mass-mixing parameters, in light of recent neutrino oscillation data (KamLAND, SNO, and MINOS) and cosmological observations (WMAP 5-year and other data). We discuss their interplay with the final 0nu2beta decay results in 76-Ge claimed by part of the Heidelberg-Moscow Collaboration, using recent evaluations of the corresponding nuclear matrix elements, and their uncertainties. We also comment on the 0nu2beta limits in 130-Te recently set by Cuoricino, and on prospective limits or signals from the KATRIN experiment.

research product

Cosmological limits on neutrino unknowns versus low redshift priors

Recent Cosmic Microwave Background (CMB) temperature and polarization anisotropy measurements from the Planck mission have significantly improved previous constraints on the neutrino masses as well as the bounds on extended models with massless or massive sterile neutrino states. However, due to parameter degeneracies, additional low redshift priors are mandatory in order to sharpen the CMB neutrino bounds. We explore here the role of different priors on low redshift quantities, such as the Hubble constant, the cluster mass bias, and the reionization optical depth $\tau$. Concerning current priors on the Hubble constant and the cluster mass bias, the bounds on the neutrino parameters may di…

research product

Observing Higgs boson production through its decay into gamma-rays: A messenger for Dark Matter candidates

In this Letter, we study the gamma-ray signatures subsequent to the production of a Higgs boson in space by dark matter annihilations. We investigate the cases where the Higgs boson is produced at rest or slightly boosted and show that such configurations can produce characteristic bumps in the gamma-ray data. These results are relevant in the case of the Standard Model-like Higgs boson provided that the dark matter mass is about 63 GeV, 109 GeV or 126 GeV, but can be generalized to any other Higgs boson masses. Here, we point out that it may be worth looking for a 63 GeV line since it could be the signature of the decay of a Standard Model-like Higgs boson produced in space, as in the case…

research product

The galaxy power spectrum take on spatial curvature and cosmic concordance

The concordance of the $\Lambda$CDM cosmological model in light of current observations has been the subject of an intense debate in recent months. The 2018 Planck Cosmic Microwave Background (CMB) temperature anisotropy power spectrum measurements appear at face value to favour a spatially closed Universe with curvature parameter $\Omega_K<0$. This preference disappears if Baryon Acoustic Oscillation (BAO) measurements are combined with Planck data to break the geometrical degeneracy, although the reliability of this combination has been questioned due to the strong tension present between the two datasets when assuming a curved Universe. Here, we approach this issue from yet another point…

research product

Cosmological axion and neutrino mass constraints from Planck 2015 temperature and polarization data

Axions currently provide the most compelling solution to the strong CP problem. These particles may be copiously produced in the early universe, including via thermal processes. Therefore, relic axions constitute a hot dark matter component and their masses are strongly degenerate with those of the three active neutrinos, as they leave identical signatures in the different cosmological observables. In addition, thermal axions, while still relativistic states, also contribute to the relativistic degrees of freedom, parameterised via $N_{eff}$. We present the cosmological bounds on the relic axion and neutrino masses, exploiting the full Planck mission data, which include polarization measure…

research product

In the realm of the Hubble tension—a review of solutions

The $\Lambda$CDM model provides a good fit to a large span of cosmological data but harbors areas of phenomenology. With the improvement of the number and the accuracy of observations, discrepancies among key cosmological parameters of the model have emerged. The most statistically significant tension is the $4-6\sigma$ disagreement between predictions of the Hubble constant $H_0$ by early time probes with $\Lambda$CDM model, and a number of late time, model-independent determinations of $H_0$ from local measurements of distances and redshifts. The high precision and consistency of the data at both ends present strong challenges to the possible solution space and demand a hypothesis with en…

research product