6533b832fe1ef96bd129af70
RESEARCH PRODUCT
A Study of Perceptron Mapping Capability to Design Speech Event Detectors
Mark A. ClementsSabato Marco SiniscalchiGiorgio VassalloAntonio GentileFilippo Sorbellosubject
Artificial neural networkComputer scienceEvent (computing)business.industrySpeech recognitionComputer Science::Neural and Evolutionary ComputationContext (language use)Pattern recognitionspeech segmentationPerceptronSpeech segmentationSupport vector machineComputer Science::SoundSpeechDetection theoryArtificial intelligencerecognitionHidden Markov modelbusinessdescription
Event detection is a fundamental yet critical component in automatic speech recognition (ASR) systems that attempt to extract knowledge-based features at the front-end level. In this context, it is common practice to design the detectors inside well-known frameworks based on artificial neural network (ANN) or support vector machine (SVM). In the case of ANN, speech scientists often design their detector architecture relying on conventional feed-forward multi-layer perceptron (MLP) with sigmoidal activation function. The aim of this paper is to introduce other ANN architectures inside the context of detection-based ASR. In particular, a bank of feed-forward MLPs using sinusoidal activation functions is set up to address the event detection problem. Experimental results demonstrate the effectiveness of this ANN design for speech attribute detectors.
year | journal | country | edition | language |
---|---|---|---|---|
2006-08-03 |