6533b833fe1ef96bd129b74c
RESEARCH PRODUCT
A Multiplicity result for a class of strongly indefinite asymptotically linear second order systems
Anna CapiettoFrancesca DalbonoFrancesca DalbonoAlessandro Portalurisubject
Class (set theory)Pure mathematicsApplied MathematicsMathematical analysisLinear systemMultiplicity (mathematics)34B15 37J05 53C50Functional Analysis (math.FA)Hamiltonian systemMathematics - Functional AnalysisNonlinear systemsymbols.namesakeShooting methodMathematics - Classical Analysis and ODEsSettore MAT/05 - Analisi MatematicaDirichlet boundary conditionClassical Analysis and ODEs (math.CA)FOS: MathematicssymbolsOrder (group theory)Multiplicity Asymptotically linear BVP Maslov index Phase angleAnalysisMathematicsdescription
We prove a multiplicity result for a class of strongly indefinite nonlinear second order asymptotically linear systems with Dirichlet boundary conditions. The key idea for the proof is to bring together the classical shooting method and the Maslov index of the linear Hamiltonian systems associated to the asymptotic limits of the given nonlinearity.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2010-01-01 |