Search results for "34B15"
showing 10 items of 10 documents
Recovering a variable exponent
2021
We consider an inverse problem of recovering the non-linearity in the one dimensional variable exponent $p(x)$-Laplace equation from the Dirichlet-to-Neumann map. The variable exponent can be recovered up to the natural obstruction of rearrangements. The main technique is using the properties of a moment problem after reducing the inverse problem to determining a function from its $L^p$-norms.
Three solutions for a two-point boundary value problem with the prescribed mean curvature equation
2015
The existence of at least three classical solutions for a parametric ordinary Dirichlet problem involving the mean curvature operator are established. In particular, a variational approach is proposed and the main results are obtained simply requiring the sublinearity at zero of the considered nonlinearity.
Nonlinear multivalued Duffing systems
2018
We consider a multivalued nonlinear Duffing system driven by a nonlinear nonhomogeneous differential operator. We prove existence theorems for both the convex and nonconvex problems (according to whether the multivalued perturbation is convex valued or not). Also, we show that the solutions of the nonconvex problem are dense in those of the convex (relaxation theorem). Our work extends the recent one by Kalita-Kowalski (JMAA, https://doi.org/10.1016/j.jmaa. 2018.01.067).
Multiplicity results for asymmetric boundary value problems with indefinite weights
2004
We prove existence and multiplicity of solutions, with prescribed nodal properties, to a boundary value problem of the formu″+f(t,u)=0,u(0)=u(T)=0. The nonlinearity is supposed to satisfy asymmetric, asymptotically linear assumptions involving indefinite weights. We first study some auxiliary half-linear, two-weighted problems for which an eigenvalue theory holds. Multiplicity is ensured by assumptions expressed in terms of weighted eigenvalues. The proof is developed in the framework of topological methods and is based on some relations between rotation numbers and weighted eigenvalues.
Coupled fixed point, F-invariant set and fixed point of N-order
2010
In this paper, we establish some new coupled fixed point theorems in complete metric spaces, using a new concept of $F$-invariant set. We introduce the notion of fixed point of $N$-order as natural extension of that of coupled fixed point. As applications, we discuss and adapt the presented results to the setting of partially ordered cone metric spaces. The presented results extend and complement some known existence results from the literature.
A Mountain Pass Theorem for a Suitable Class of Functions
2009
A Multiplicity result for a class of strongly indefinite asymptotically linear second order systems
2010
We prove a multiplicity result for a class of strongly indefinite nonlinear second order asymptotically linear systems with Dirichlet boundary conditions. The key idea for the proof is to bring together the classical shooting method and the Maslov index of the linear Hamiltonian systems associated to the asymptotic limits of the given nonlinearity.
Some notes on a superlinear second order Hamiltonian system
2016
Variational methods are used in order to establish the existence and the multiplicity of nontrivial periodic solutions of a second order dynamical system. The main results are obtained when the potential satisfies different superquadratic conditions at infinity. The particular case of equations with a concave-convex nonlinear term is covered.
Singular solutions to a quasilinear ODE
2005
In this paper, we prove the existence of infinitely many radial solutions having a singular behaviour at the origin for a superlinear problem of the form $-\Delta_pu=|u|^{\delta-1}u$ in $B(0,1)\setminus\{0\}\subset\mathbb R^N$,\, $u=0$ for $|x|=1$, where $N>p>1$ and $\delta>p-1$. Solutions are characterized by their nodal properties. The case $\delta+1 <\frac{Np}{N-p}$ is treated. The study of the singularity is based on some energy considerations and takes into account the classification of the behaviour of the possible solutions available in the literature. By following a shooting approach, we are able to deduce the main multiplicity result from some estimates on the rotation numbers asso…
Existence results for parametric boundary value problems involving the mean curvature operator
2014
In this note we propose a variational approach to a parametric differential problem where a prescribed mean curvature equation is considered. In particular, without asymptotic assumptions at zero and at infinity on the potential, we obtain an explicit positive interval of parameters for which the problem under examination has at least one nontrivial and nonnegative solution.