6533b833fe1ef96bd129b84f
RESEARCH PRODUCT
A restriction on the schur multiplier of nilpotent lie algebras
Francesco G. RussoPeyman Niroomandsubject
Discrete mathematicsPure mathematicsAlgebra and Number TheorySchur multiplierSchur's lemmanilpotent Lie algebrasSchur algebrahomology of Lie algebraSchur's theoremLie conformal algebraNilpotent Lie algebraSettore MAT/02 - AlgebraAdjoint representation of a Lie algebraRepresentation of a Lie groupNilpotent groupMathematics::Representation TheoryMathematicsdescription
An improvement of a bound of Yankosky (2003) is presented in this paper, thanks to a restriction which has been recently obtained by the authors on the Schur multiplier M(L) of a finite dimensional nilpotent Lie algebra L. It is also described the structure of all nilpotent Lie algebras such that the bound is attained. An important role is played by the presence of a derived subalgebra of maximal dimension. This allows precision on the size of M(L). Among other results, applications to the non-abelian tensor square L ⊗ L are illustrated.
year | journal | country | edition | language |
---|---|---|---|---|
2011-01-01 |