6533b833fe1ef96bd129b855

RESEARCH PRODUCT

Weak chord-arc curves and double-dome quasisymmetric spheres

Vyron Vellis

subject

Unit sphereChord (geometry)QA299.6-43330C65 30C62Mathematics::Complex VariablesApplied Mathematics010102 general mathematicsdouble-dome-like surfacesMetric Geometry (math.MG)16. Peace & justice01 natural sciencesOmegachord-arc propertyCombinatoricsMathematics - Metric GeometryFOS: Mathematicsquasisymmetric spheresAhlfors 2-regularityMathematics::Metric GeometrySPHERESGeometry and Topology0101 mathematicsahlfors 2-regularityAnalysisMathematics

description

Let $\Omega$ be a planar Jordan domain and $\alpha>0$. We consider double-dome-like surfaces $\Sigma(\Omega,t^{\alpha})$ over $\overline{\Omega}$ where the height of the surface over any point $x\in\overline{\Omega}$ equals $\text{dist}(x,\partial\Omega)^{\alpha}$. We identify the necessary and sufficient conditions in terms of $\Omega$ and $\alpha$ so that these surfaces are quasisymmetric to $\mathbb{S}^2$ and we show that $\Sigma(\Omega,t^{\alpha})$ is quasisymmetric to the unit sphere $\mathbb{S}^2$ if and only if it is linearly locally connected and Ahlfors $2$-regular.

https://dx.doi.org/10.48550/arxiv.1412.5110