6533b833fe1ef96bd129b8c7

RESEARCH PRODUCT

Bayesian Analysis of a Future Beta Decay Experiment's Sensitivity to Neutrino Mass Scale and Ordering

Sebastian BöserGray RybkaM. GuigueWalter C. PettusWalter C. PettusR. CervantesMalachi SchramM. GrandoT. WendlerMathew ThomasKareem KazkazB. H. LaroqueJames NikkelM. OttigerB.a. VandevenderB.a. VandevenderBenjamin MonrealJ. JohnstonM. BetancourtL. SaldañaR. G. H. RobertsonX. HuyanJoseph A. FormaggioZ. BogoradA. Ashtari EsfahaniR. MohiuddinV. SibilleL. De ViveirosE. ZayasA. LindmanMartin FertlN. BuzinskyL. TvrznikovaL. GladstoneJ. HartseA. ZieglerThomas ThümmlerP. T. SurukuchiN. S. OblathA. B. TellesC. ClaessensK. M. HeegerT. E. WeissT. E. WeissY. H. SunP. L. SlocumE. NovitskiJonathan R. TedeschiA. M. Jones

subject

Semileptonic decaydata analysis methodParticle physicsBayesian probabilityFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Bayesian inferenceBayesian01 natural sciencesMeasure (mathematics)statistics: Bayesianmass: scaleHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesCalibrationneutrino: massSensitivity (control systems)Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physicsElectroweak InteractionProbability and statisticssemileptonic decaycalibrationsensitivityneutrino: nuclear reactorHigh Energy Physics - Phenomenologymass: calibration[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Physics - Data Analysis Statistics and ProbabilityspectralHigh Energy Physics::ExperimentNeutrinoData Analysis Statistics and Probability (physics.data-an)[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis Statistics and Probability [physics.data-an]Symmetries

description

Bayesian modeling techniques enable sensitivity analyses that incorporate detailed expectations regarding future experiments. A model-based approach also allows one to evaluate inferences and predicted outcomes, by calibrating (or measuring) the consequences incurred when certain results are reported. We present procedures for calibrating predictions of an experiment's sensitivity to both continuous and discrete parameters. Using these procedures and a new Bayesian model of the $\beta$-decay spectrum, we assess a high-precision $\beta$-decay experiment's sensitivity to the neutrino mass scale and ordering, for one assumed design scenario. We find that such an experiment could measure the electron-weighted neutrino mass within $\sim40\,$meV after 1 year (90$\%$ credibility). Neutrino masses $>500\,$meV could be measured within $\approx5\,$meV. Using only $\beta$-decay and external reactor neutrino data, we find that next-generation $\beta$-decay experiments could potentially constrain the mass ordering using a two-neutrino spectral model analysis. By calibrating mass ordering results, we identify reporting criteria that can be tuned to suppress false ordering claims. In some cases, a two-neutrino analysis can reveal that the mass ordering is inverted, an unobtainable result for the traditional one-neutrino analysis approach.

10.1103/physrevc.103.065501http://arxiv.org/abs/2012.14341