0000000000319342

AUTHOR

Thomas Thümmler

showing 17 related works from this author

Focal-plane detector system for the KATRIN experiment

2014

The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high-vacuum system, a high-vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system. It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.

PhysicsNuclear and High Energy PhysicsElectron spectrometerPhysics - Instrumentation and DetectorsSpectrometerbusiness.industryPhysics::Instrumentation and DetectorsDetectorFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)High Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)OpticsData acquisitionScintillation counterCalibrationNuclear Experiment (nucl-ex)NeutrinobusinessInstrumentationNuclear ExperimentKATRIN
researchProduct

Commissioning of the vacuum system of the KATRIN Main Spectrometer

2016

The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. An integral energy analysis will be performed by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m[superscript 3], and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips ha…

010302 applied physicsPhysicsLight nucleusPhysics - Instrumentation and DetectorsSpectrometerSpectrometersPhysics::Instrumentation and DetectorsVacuum-basedFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)01 natural sciencesEnergy analysisNuclear physics0103 physical sciencesEnergy spectrumGas systems and purificationNeutrino detectorsddc:620010306 general physicsInstrumentationMathematical PhysicsEngineering & allied operationsKATRINdetectors
researchProduct

First operation of the KATRIN experiment with tritium

2020

AbstractThe determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of $$\upbeta $$β-decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of $$0.2\hbox { eV}$$0.2eV ($$90\%$$90% CL). In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was …

Physics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsFOS: Physical scienceslcsh:Astrophysics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]TritiumKATRIN01 natural sciencesantineutrino/e: massHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)lcsh:QB460-4660103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]lcsh:Nuclear and particle physics. Atomic energy. RadioactivityMass scaleddc:530Electron Capture[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsEngineering (miscellaneous)Nuclear ExperimentAstroparticle physicsPhysics010308 nuclear & particles physicstritiumPhysicsQuímicaInstrumentation and Detectors (physics.ins-det)sensitivityddc:lcsh:QC770-798TritiumHigh Energy Physics::ExperimentNeutrinoPräzisionsexperimente - Abteilung BlaumNeutrino Mass[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Electron neutrinoperformanceKATRINAstrophysics - Cosmology and Nongalactic Astrophysicsexperimental results
researchProduct

Cyclotron radiation emission spectroscopy signal classification with machine learning in project 8

2019

The Cyclotron Radiation Emission Spectroscopy (CRES) technique pioneered by Project 8 measures electromagnetic radiation from individual electrons gyrating in a background magnetic field to construct a highly precise energy spectrum for beta decay studies and other applications. The detector, magnetic trap geometry, and electron dynamics give rise to a multitude of complex electron signal structures which carry information about distinguishing physical traits. With machine learning models, we develop a scheme based on these traits to analyze and classify CRES signals. Understanding and proper use of these traits will be instrumental to improve cyclotron frequency reconstruction and help Pro…

CyclotronGeneral Physics and AstronomyFOS: Physical sciencesElectronMachine learningcomputer.software_genre01 natural sciencesSignalElectromagnetic radiation010305 fluids & plasmaslaw.inventionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)lawMagnetic trap0103 physical sciencesddc:530Emission spectrumCyclotron radiationNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsbusiness.industryPhysicsDetector3. Good healthArtificial intelligencebusinesscomputer
researchProduct

Reduction of stored-particle background by a magnetic pulse method at the KATRIN experiment

2018

Arenz, M., et al. “Reduction of Stored-Particle Background by a Magnetic Pulse Method at the KATRIN Experiment.” The European Physical Journal C, vol. 78, no. 9, Sept. 2018. © 2018 The Authors

Speichertechnik - Abteilung BlaumPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Field (physics)Physics::Instrumentation and DetectorsFOS: Physical scienceslcsh:AstrophysicsElectronKATRIN01 natural sciencesradon: nuclideNeutrino mass0103 physical scienceslcsh:QB460-466coillcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsnumerical calculationsEngineering (miscellaneous)background: radioactivitybackground: suppressionPhysicsSpectrometer010308 nuclear & particles physicsPhysicsOrder (ring theory)Monte Carlo methodsInstrumentation and Detectors (physics.ins-det)Radon backgroundPulse (physics)13. Climate actionBackground reduction methodsPartículaslcsh:QC770-798spectrometerAtomic physicsElectricidadElectron neutrinoKATRIN
researchProduct

High-voltage monitoring with a solenoid retarding spectrometer at the KATRIN experiment

2014

The KATRIN experiment will measure the absolute mass scale of neutrinos with a sensitivity of m(ν) = 200meV/c(2) by means of an electrostatic spectrometer set close to the tritium β-decay endpoint at 18.6keV. Fluctuations of the energy scale must be under control within ±60mV (±3ppm). Since a precise voltage measurement in the range of tens of kV is on the edge of current technology, a nuclear standard will be deployed additionally. Parallel to the main spectrometer the same retarding potential will be applied to the monitor spectrometer to measure 17.8-keV K-conversion electrons of (83m)Kr. This article describes the setup of the monitor spectrometer and presents its first measurement resu…

PhysicsRange (particle radiation)SpectrometerPhysics::Instrumentation and DetectorsMeasure (physics)High voltageSolenoidNuclear physicsDetectors and Experimental TechniquesNeutrinoInstrumentationMathematical PhysicsKATRINVoltageJournal of Instrumentation
researchProduct

Suppression of Penning discharges between the KATRIN spectrometers

2020

The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)neutrino mass with a sensitivity of $0.2\textrm{ eV/c}^2$ (90$\%$ C.L.) by precisely measuring the endpoint region of the tritium $\beta$-decay spectrum. It uses a tandem of electrostatic spectrometers working as MAC-E (magnetic adiabatic collimation combined with an electrostatic) filters. In the space between the pre-spectrometer and the main spectrometer, an unavoidable Penning trap is created when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create a…

Speichertechnik - Abteilung BlaumPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsPenning trapFOS: Physical scienceslcsh:AstrophysicsSuperconducting magnetElectronTritiumKATRIN01 natural sciencesNuclear physics0103 physical scienceslcsh:QB460-466lcsh:Nuclear and particle physics. Atomic energy. RadioactivityElectron Captureddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNuclear ExperimentEngineering (miscellaneous)PhysicsSpectrometer010308 nuclear & particles physicsPhysicsInstrumentation and Detectors (physics.ins-det)Químicamagnet: superconductivityspectrometer: electrostaticPenning trapBeamlineBeta (plasma physics)electron: backgroundlcsh:QC770-798NeutrinoNeutrino MassKATRIN
researchProduct

Penning discharge in the KATRIN pre-spectrometer

2014

The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next-generation, large-scale tritium β-decay experiment to determine the neutrino mass by investigating the kinematics of tritium β-decay with a sensitivity of 200 meV/c2 using the MAC-E filter technique. In order to reach this sensitivity a low background level of 10−2 counts per second (cps) is required. A major background concern in MAC-E filters is the presence of Penning traps. A Penning trap is a special configuration of electromagnetic fields that allows the storage of electrically charged particles. This paper describes the mechanism of Penning discharges and the corresponding measurements performed at the test setup of the KAT…

PhysicsSpectrometerCyclotronElectronPenning trapCharged particlelaw.inventionNuclear physicslawIon trapNeutrinoAtomic physicsInstrumentationMathematical PhysicsKATRINJournal of Instrumentation
researchProduct

Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector

2017

The Project 8 collaboration seeks to measure the absolute neutrino mass scale by means of precision spectroscopy of the beta decay of tritium. Our technique, cyclotron radiation emission spectroscopy, measures the frequency of the radiation emitted by electrons produced by decays in an ambient magnetic field. Because the cyclotron frequency is inversely proportional to the electron's Lorentz factor, this is also a measurement of the electron's energy. In order to demonstrate the viability of this technique, we have assembled and successfully operated a prototype system, which uses a rectangular waveguide to collect the cyclotron radiation from internal conversion electrons emitted from a ga…

HistoryPhysics - Instrumentation and DetectorsCyclotronFOS: Physical sciencesElectronRadiationEducationlaw.inventionHigh Energy Physics - Experimentsymbols.namesakeHigh Energy Physics - Experiment (hep-ex)Internal conversionlawddc:530Cyclotron radiationEmission spectrumNuclear Experiment (nucl-ex)Nuclear ExperimentPhysicsPhysicsInstrumentation and Detectors (physics.ins-det)Computer Science ApplicationsComputational physicsLorentz factorsymbolsNeutrino
researchProduct

Bayesian Analysis of a Future Beta Decay Experiment's Sensitivity to Neutrino Mass Scale and Ordering

2021

Bayesian modeling techniques enable sensitivity analyses that incorporate detailed expectations regarding future experiments. A model-based approach also allows one to evaluate inferences and predicted outcomes, by calibrating (or measuring) the consequences incurred when certain results are reported. We present procedures for calibrating predictions of an experiment's sensitivity to both continuous and discrete parameters. Using these procedures and a new Bayesian model of the $\beta$-decay spectrum, we assess a high-precision $\beta$-decay experiment's sensitivity to the neutrino mass scale and ordering, for one assumed design scenario. We find that such an experiment could measure the el…

Semileptonic decaydata analysis methodParticle physicsBayesian probabilityFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Bayesian inferenceBayesian01 natural sciencesMeasure (mathematics)statistics: Bayesianmass: scaleHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesCalibrationneutrino: massSensitivity (control systems)Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physicsElectroweak InteractionProbability and statisticssemileptonic decaycalibrationsensitivityneutrino: nuclear reactorHigh Energy Physics - Phenomenologymass: calibration[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Physics - Data Analysis Statistics and ProbabilityspectralHigh Energy Physics::ExperimentNeutrinoData Analysis Statistics and Probability (physics.data-an)[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis Statistics and Probability [physics.data-an]Symmetries
researchProduct

Calibration of high voltages at the ppm level by the difference of $^{83\mathrm{m}}$Kr conversion electron lines at the KATRIN experiment

2018

The neutrino mass experiment KATRIN requires a stability of 3 ppm for the retarding potential at − 18.6 kV of the main spectrometer. To monitor the stability, two custom-made ultra-precise high-voltage dividers were developed and built in cooperation with the German national metrology institute Physikalisch-Technische Bundesanstalt (PTB). Until now, regular absolute calibration of the voltage dividers required bringing the equipment to the specialised metrology laboratory. Here we present a new method based on measuring the energy difference of two [superscript 83m]Kr conversion electron lines with the KATRIN setup, which was demonstrated during KATRIN’s commissioning measurements in July 2…

Speichertechnik - Abteilung BlaumPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)FOS: Physical sciences7. Clean energy01 natural sciencesNuclear physics0103 physical sciencesCalibrationddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsEngineering (miscellaneous)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]PhysicsTeoría de los quantaSpectrometer010308 nuclear & particles physicsPhysicsVoltage dividerInstrumentation and Detectors (physics.ins-det)MetrologyNeutrinoEnergy (signal processing)VoltageKATRIN
researchProduct

Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8

2017

The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron Radiation Emission Spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range with $\mathcal{O}({\rm eV})$ resolution. A lower bound of $m(\nu_e) \gtrsim 9(0.1)\, {\rm meV}$ is set by observations of neutrino oscillations, while the KATRIN Experiment - the current-generation tritium beta-decay experiment that is based on Magnetic Adiabatic Collimation with an Electrostatic (MAC-E) filter - will achieve a sensitivity of $m(\nu_e) \lesssim 0.2\,{\rm eV}$. The CRES technique aims to avoid…

PhysicsNuclear and High Energy PhysicsPhysics - Instrumentation and Detectors010308 nuclear & particles physicsPhysics::Instrumentation and DetectorsFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)7. Clean energy01 natural sciencesUpper and lower boundsHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesHigh Energy Physics::ExperimentCyclotron radiationEmission spectrumSensitivity (control systems)Nuclear Experiment (nucl-ex)Neutrino010306 general physicsNeutrino oscillationAdiabatic processNuclear ExperimentKATRIN
researchProduct

High-resolution spectroscopy of gaseous $^\mathrm{83m}$Kr conversion electrons with the KATRIN experiment

2020

In this work, we present the first spectroscopic measurements of conversion electrons originating from the decay of metastable gaseous $^\mathrm{83m}$Kr with the Karlsruhe Tritium Neutrino (KATRIN) experiment. The results obtained in this calibration measurement represent a major commissioning milestone for the upcoming direct neutrino mass measurement with KATRIN. The successful campaign demonstrates the functionalities of the full KATRIN beamline. The KATRIN main spectrometer's excellent energy resolution of ~ 1 eV made it possible to determine the narrow K-32 and L$_3$-32 conversion electron line widths with an unprecedented precision of ~ 1 %.

Nuclear and High Energy PhysicsSpeichertechnik - Abteilung BlaumPhysics - Instrumentation and DetectorsResolution (mass spectrometry)Physics::Instrumentation and Detectorsenergy resolutionFOS: Physical sciencesElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]KATRIN7. Clean energy01 natural sciencesAtomicneutrino massNuclear physicsParticle and Plasma Physicsconversion electronsMetastability0103 physical sciencesNuclearddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsSpectroscopyNuclear ExperimentPhysicsSpectrometerelectrostatic spectrometer010308 nuclear & particles physicsPhysicskrypton: decayMolecularInstrumentation and Detectors (physics.ins-det)krypton: nuclide530 PhysikcalibrationNuclear & Particles Physicsddc:3. Good healthBeamlineelectron: energy spectrumNeutrinoperformanceKATRIN
researchProduct

Project 8 Phase III Design Concept

2017

We present a working concept for Phase III of the Project 8 experiment, aiming to achieve a neutrino mass sensitivity of $2~\mathrm{eV}$ ($90~\%$ C.L.) using a large volume of molecular tritium and a phased antenna array. The detection system is discussed in detail.

PhysicsHistoryPhysics - Instrumentation and DetectorsPhysicsPhase (waves)FOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)Computer Science ApplicationsEducationComputational physicsHigh Energy Physics - ExperimentAntenna arrayHigh Energy Physics - Experiment (hep-ex)Volume (thermodynamics)ddc:530Sensitivity (control systems)Nuclear Experiment (nucl-ex)NeutrinoNuclear Experiment
researchProduct

Impact of a cryogenic baffle system on the suppression of radon-induced background in the KATRIN Pre-Spectrometer

2018

The KATRIN experiment will determine the effective electron anti-neutrino mass with a sensitivity of 200 meV/c2 at 90% CL. The energy analysis of tritium β-decay electrons will be performed by a tandem setup of electrostatic retarding spectrometers which have to be operated at very low background levels of <10−2 counts per second. This benchmark rate can be exceeded by background processes resulting from the emanation of single 219,220Rn atoms from the inner spectrometer surface and an array of non-evaporable getter strips used as main vacuum pump. Here we report on the impact of a cryogenic technique to reduce this radon-induced background in electrostatic spectrometers. It is based on ins…

Materials scienceFlux tubeSpectrometer010308 nuclear & particles physicsbusiness.industryBaffleCryogenicsLiquid nitrogen01 natural scienceslaw.inventionOpticslawGetter0103 physical sciencesVacuum pump010306 general physicsbusinessInstrumentationMathematical PhysicsKATRINJournal of Instrumentation
researchProduct

Locust: C++ software for simulation of RF detection

2019

The Locust simulation package is a new C++ software tool developed to simulate the measurement of time-varying electromagnetic fields using RF detection techniques. Modularity and flexibility allow for arbitrary input signals, while concurrently supporting tight integration with physics-based simulations as input. External signals driven by the Kassiopeia particle tracking package are discussed, demonstrating conditional feedback between Locust and Kassiopeia during software execution. An application of the simulation to the Project 8 experiment is described. Locust is publicly available at https://github.com/project8/locust_mc.

PhysicsFlexibility (engineering)Modularity (networks)Physics - Instrumentation and Detectorsbiology010308 nuclear & particles physicsbusiness.industrySoftware toolFOS: Physical sciencesGeneral Physics and AstronomyInstrumentation and Detectors (physics.ins-det)Computational Physics (physics.comp-ph)Tracking (particle physics)biology.organism_classification01 natural sciencesParticle detectorSoftware0103 physical sciencesAntenna (radio)010306 general physicsbusinessPhysics - Computational PhysicsComputer hardwareLocust
researchProduct

Electron Radiated Power in Cyclotron Radiation Emission Spectroscopy Experiments

2019

The recently developed technique of Cyclotron Radiation Emission Spectroscopy (CRES) uses frequency information from the cyclotron motion of an electron in a magnetic bottle to infer its kinetic energy. Here we derive the expected radio frequency signal from an electron in a waveguide CRES apparatus from first principles. We demonstrate that the frequency-domain signal is rich in information about the electron's kinematic parameters, and extract a set of measurables that in a suitably designed system are sufficient for disentangling the electron's kinetic energy from the rest of its kinematic features. This lays the groundwork for high-resolution energy measurements in future CRES experimen…

PhysicsPhysics - Instrumentation and Detectors010308 nuclear & particles physicsCyclotronFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)ElectronEffective radiated powerKinetic energy01 natural sciencesSignal3. Good healthComputational physicslaw.inventionlaw0103 physical sciencesCyclotron radiationEmission spectrumNuclear Experiment (nucl-ex)Neutrino010306 general physicsNuclear Experiment
researchProduct