6533b7d9fe1ef96bd126c3d7
RESEARCH PRODUCT
Commissioning of the vacuum system of the KATRIN Main Spectrometer
Marcus BeckM. SuesserD. EversheimE. MalcherekA. KosmiderD. HilkM. HötzelA. KovalíkW. SeilerKathrin ValeriusS. FischerR. G. H. RobertsonM. HackenjosC. WeissS. RuppF. HeizmannS. RosendahlSebastian MirzM. PrallA. W. P. PoonThomas ThümmlerR. GrössleB. KraschA. OsipowiczM. FedkevychK. HelbingBeate BornscheinSascha WüstlingGuido DrexlinA. OffJohn E. BarrettJ. SchwarzHolger NeumannN. WandkowskyA. González UreñaA. UnruN. TitovT. BergmannJ. F. WilkersonW. HerzIgor TkachevJ. BonnJ. BonnK. WiermanM. ErhardK. MüllerM. RyšavýM. SteidlA. K. SkasyrskayaAndreas KopmannBernhard HolzapfelN. TrostBenjamin MonrealL. KippenbrockK. SchönungD. WinzenA. ŠPalekS. VöckingS. VöckingR. GumbsheimerJ. ReichS. ZadoroghnyJoseph A. FormaggioMichael SturmO. DragounM. ZacherM. SchrankJ. SentkerestiováS. EbenhöchP. PlischkeSanshiro EnomotoM. BahrN. S. OblathL. KuckertErnst W. OttenK. BokelohS. BauerD. VénosJ. BehrensVolker HannenOndřej LebedaW. GilA. HuberN. KernertS. HickfordP. C.-o. RanitzschK. EitelJ. LetnevH. Seitz-moskaliukN. SteinbrinkE. EllingerHelmut H. TelleHelmut H. TelleS. DybaLutz BornscheinS. BüschS. NiemesH. KrauseM. NeubergerT.h. BurrittA. FeldenH.-w. OrtjohannMarco RölligF. M. FränkleF. M. FränkleJ. BlümerM. KrausK. SchlösserD. FurseO. RestL. La CascioMathias NoeM. MarkF. HarmsB. KuffnerV.m. LobashevN. HaußmannAlexey LokhovE. L. MartinReiner ViandenJoachim WolfM. SlezákL. De ViveirosM. KleesiekT.j. CoronaMagnus SchlösserMagnus SchlösserDiana ParnoJ. WendelMarcel KrauseLaura BodineM. BabutzkaSteffen GrohmannFlorian PriesterMarc WeberSusanne MertensSusanne MertensS. GörhardtB. HillenB. L. WallM. ArenzP. J. DoeT. HöhnA. JansenFerenc GlückCh. WeinheimerM. A. HoweM. KleinA. BeglarianStefan WelteSuren ChilingaryanM. ZbořilU. BessererS. GrohM. GhileaB. Leibersubject
010302 applied physicsPhysicsLight nucleusPhysics - Instrumentation and DetectorsSpectrometerSpectrometersPhysics::Instrumentation and DetectorsVacuum-basedFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)01 natural sciencesEnergy analysisNuclear physics0103 physical sciencesEnergy spectrumGas systems and purificationNeutrino detectorsddc:620010306 general physicsInstrumentationMathematical PhysicsEngineering & allied operationsKATRINdetectorsdescription
The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. An integral energy analysis will be performed by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m[superscript 3], and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10[superscript −11] mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.
year | journal | country | edition | language |
---|---|---|---|---|
2016-03-03 |