0000000000139617
AUTHOR
J. Bonn
Sensitive laser spectroscopy on trapped barium ions by quenching with hydrogen
The sensitivity of laser spectroscopy on barium ions stored in a radio frequency quadrupole trap was drastically increased by using hydrogen for quenching the optically pumped metastable states. The attained fluorescence intensity per ion permits the detection of single ions. The method will be applied to environmental studies on actinides.
Quadrupole interaction of $^{8}$Li and $^{9}$Li in LiNbO$_{3}$ and the quadrupole moment of $^{9}$Li
The quadrupole interaction of nuclear spin polarized8Li (I=2) and9Li (I=3/2) in LiNbO3 has been studied at room temperature. The polarization was achieved by optical pumping of a fast atomic beam with circularly polarized laser light. The atoms were implanted into a hexagonal LiNbO3 single crystal and the quadrupole splitting ofβ-NMR spectra was measured. A ratio of ¦Q(9Li)/Q(8Li)¦=0.88(4) for the nuclear quadrupole moments was deduced, yielding a new value of ¦Q(9Li)¦=25.3 (9) mb for the quadrupole moment of9Li.
Working group on neutrino physics and astrophysics — concluding remarks I
Abstract This part of the concluding remarks on the contributions and discussions in the working group on Neutrino Physics and Astrophysics summarises the following items: 1. 1) Neutrino mass measurement from Tritium beta decay, 2. 2) Neutrinoless double beta decay, 3. 3) Application of cryodetectors to the determination of neutrino properties, 4. 4) Search for a magnetic moment of the neutrino and, 5. 5) Limits on the mass of the Tau neutrino
Nuclear orientation of radon isotopes by spin exchange optical pumping
This paper reports the first demonstration of nuclear orientation of radon atoms. The method employed was spin exchange with potassium atoms polarized by optical pumping. The radon isotopes were produced at the ISOLDE isotope separator of CERN. The nuclear alignment of /sup 209/Rn and /sup 223/Rn has been measured by observation of ..gamma..-ray anisotropies and the magnetic dipole moment for /sup 209/Rn has been measured by the nuclear-magnetic-resonance method to be chemically bond..mu..chemically bond = 0.838 81(39)..mu../sub N/.
Laser resonant ionization of plutonium
Resonance ionization mass spectrometry (RIMS) has been tested for the isotope-selective determination of trace amounts of plutonium. An atomic beam is formed by evaporating plutonium atoms from a rhenium-filament heated to 1800 °C. The radiation of a pulsed dye laser excites the atoms in a two-photon process (λ=595.2 nm) followed by photoionization of the excited atoms. Mass selectivity is obtained by use of a time-of-flight spectrometer. A resonant signal of239Pu was measured with 1013 atoms deposited on the filament.
An on-line mass separator for fission-produced alkali isotopes
Abstract The design of an on-line mass separator installed at the TRIGA reactor in Mainz is described and its performance discussed. A tungsten oven, filled with about 2 g of 235U embedded in graphite, is exposed to a flux of 1.7 × 1011 thermal neutrons (s− cm−2) near the reactor core. After diffusion out of the graphite the fission-produced alkali isotopes are surface-ionized and electromagnetically mass-separated, the resolving power being about 750. Losses during the diffusion out of the target material are discussed. Due to these losses the maximum separator efficiency is about 5%, corresponding to a source strength of about 109 particles s−1 for the most abundant isotopes. The heaviest…
Focal-plane detector system for the KATRIN experiment
The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high-vacuum system, a high-vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system. It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.
Commissioning of the vacuum system of the KATRIN Main Spectrometer
The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. An integral energy analysis will be performed by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m[superscript 3], and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips ha…
The development of the KATRIN magnet system
The Karlsruhe Tritium Neutrino Experiment KATRIN aims to measure the mass of the electron neutrino with unprecedented accuracy. For this experiment a special magnet system with about 30 LHe bath cooled superconducting magnets grouped in 10 different sections needs to be developed. The magnetic fields required for the electron transport and spectrometer resolution have a level between 3 and 6 T and must be constant in time over months. Further requirements for field homogeneity and tritium compatibility lead to a unique magnet system. A challenging task of this system is to keep the 10 m beam tube of the source magnet at a constant temperature of 30 K with extremely high temperature stabilit…
Half-lives, neutron emission probabilities and fission yields of neutron-rich rubidium isotopes in the mass regionA=96 toA=100
Neutron-rich rubidium isotopes were produced by thermal-neutron induced fission of235U and were isolated by surface ionization and mass separation. The new isotope (51 ±17) ms100Rb was identified. The half-lives of the rubidium isotopes with mass numberA=96 toA=100 were measured using neutron multiscaling or gamma multispectrum analysis. Measurements of the delayed-neutron emission probabilityP n of99Rb and of the fission yields of97Rb,98Rb, and99Rb were performed.
Laser spectroscopy and β-decay asymmetry from on-line implanted nuclei
The method of collinear laser spectroscopy is combined with s-radiation detected optical pumping by implanting the optically oriented atoms into a cubic crystal.
Trace detection of plutonium by three-step photoionization with a laser system pumped by a copper vapor laser
Laser photoionization has been used to detect trace amounts of plutonium. A high sensitivity and selectivity has been achieved by applying three-step excitation and ionization of the plutonium atoms with high pulse-repetition rates and additional mass determination by time-of-flight measurements. A laser system was developed which consists of a copper vapor laser pumping three dye lasers simultaneously. Samples containing between 1010 and 1012 atoms of239Pu on Re filaments were measured yielding strong resonance signals with maximum ion count rates of several kHz at a vanishingly low background. A detection efficiency of 10−7 was determined allowing the detection of about 108 plutonium atom…
Prototype of an angular-selective photoelectron calibration source for the KATRIN experiment
The method of direct neutrino mass determination based on the kinematics of tritium beta decay, which is adopted by the KATRIN experiment, makes use of a large, high-resolution electrostatic spectrometer with magnetic adiabatic collimation. In order to target a sensitivity on the neutrino mass of 0.2 eV/c^2, a detailed understanding of the electromagnetic properties of the electron spectrometer is essential, requiring comprehensive calibration measurements with dedicated electron sources. In this paper we report on a prototype of a photoelectron source providing a narrow energy spread and angular selectivity. Both are key properties for the characterisation of the spectrometer. The angular …
The Q-value of tritium β-decay and the neutrino mass
Abstract The paper discusses the influence of β -endpoint energies and related atomic mass values on the determination of the neutrino mass in present and future β -decay experiments with particular emphasis on the case of tritium decay
The status of KATRIN
Abstract KATRIN will have the capability to push the limit on the mass of the electron anti-neutrino to 200 meV (90% C.L.) by investigating the kinematics of the electrons from tritium β decay very close to the endpoint of the β spectrum. The importance of this experiment will be discussed in various contributions to this school. KATRIN is currently under construction at KIT (Karlsruhe Institute of Technology). This talk gives an overview over the status of KATRIN with emphasis on the aspects of KATRIN not covered by the talks following this one.
The Cryogenic Pumping Section of the KATRIN Experiment
In order to determine the absolute scale of the neutrino mass with a sensitivity of 0.2 (90% Confidence Level), the Karlsruhe Tritium Neutrino experiment (KATRIN) operates a series of superconducting magnet systems, which guide the electrons adiabatically from the source of tritium beta-decay to the detector within a magnetic flux of 191 . The 7 m long Cryogenic Pumping Section (CPS) is designed as the final barrier of tritium circulation. It has to reduce the tritium partial pressure below Pa in order to limit the background count rate in the measurement. To achieve this, the tritium entering the CPS must be adsorbed onto a pre-condensed argon layer on the inner surface of the beam tube at…
High-voltage monitoring with a solenoid retarding spectrometer at the KATRIN experiment
The KATRIN experiment will measure the absolute mass scale of neutrinos with a sensitivity of m(ν) = 200meV/c(2) by means of an electrostatic spectrometer set close to the tritium β-decay endpoint at 18.6keV. Fluctuations of the energy scale must be under control within ±60mV (±3ppm). Since a precise voltage measurement in the range of tens of kV is on the edge of current technology, a nuclear standard will be deployed additionally. Parallel to the main spectrometer the same retarding potential will be applied to the monitor spectrometer to measure 17.8-keV K-conversion electrons of (83m)Kr. This article describes the setup of the monitor spectrometer and presents its first measurement resu…
Determination of nuclear spins of short-lived Rb and Cs isotopes by β radiation detected optical pumping
Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (−1.0−1.1+0.9) eV2. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a …
The status of the Mainz neutrino mass experiment
Abstract The present status of the Mainz tritium β decay experiments is given. The very recent improvement of the Mainz setup and the first tritium data are presented.
Penning discharge in the KATRIN pre-spectrometer
The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next-generation, large-scale tritium β-decay experiment to determine the neutrino mass by investigating the kinematics of tritium β-decay with a sensitivity of 200 meV/c2 using the MAC-E filter technique. In order to reach this sensitivity a low background level of 10−2 counts per second (cps) is required. A major background concern in MAC-E filters is the presence of Penning traps. A Penning trap is a special configuration of electromagnetic fields that allows the storage of electrically charged particles. This paper describes the mechanism of Penning discharges and the corresponding measurements performed at the test setup of the KAT…
An angular-selective electron source for the KATRIN experiment
The KATRIN experiment is going to search for the average mass of the electron antineutrino with a sensitivity of 0.2 eV/c2. It uses a retardation spectrometer of MAC-E filter type to accurately measure the shape of the electron spectrum at the endpoint of tritium beta decay. In order to achieve the planned sensitivity the transmission properties of the spectrometer have to be understood with high precision for all initial conditions. For this purpose an electron source has been developed that emits single electrons at adjustable total energy and adjustable emission angle. The emission is pointlike and can be moved across the full flux tube that is imaged onto the detector. Here, we demonstr…
Hyperfine structure and isotope shifts of neutron-rich138?146Cs
The 6s2S1/2-7p 2P3/2 transition in138–142Cs (λ=455.5 nm) has been investigated by high-resolution collinear laser spectroscopy in a fast atomic beam. The isotopes are obtained by on-line mass separation of fission products. Nuclear moments and changes of mean-square charge radii are derived from hyperfine structure and isotope shift.
A new upper limit of the electron anti neutrino rest mass from tritium β-decay
Abstract A new upper limit of the electron anti neutrino rest mass has been deduced from the tritium β-decay spectrum. A source of molecular tritium has been investigated with a new solenoid retarding spectrometer. The results are m ν ϵ 2 = −38.8 ± 34.1 stat ± 15.1 syst (eV) 2 /c 4 from which we conclude m ν ϵ ≤ 7.2 eV/c 2 with 95% c.l. Our β-endpoint corresponds to a 3H-3He atomic mass difference of Δm( 3 H- 3 He) = 18590.8 ± 3 eV/c 2 (1σ) .
Nuclear Radiation Detected Optical Pumping of neutron-deficient Hg isotopes
The extension of the Nuclear Radiation Detected Optical Pumping method to mass-separated samples of isotopes far off stability is presented for a series of light Hg isotopes produced at the ISOLDE facility at CERN. The isotope under investigation is transferred by an automatic transfer system into the optical pumping apparatus. Zeeman scanning of an isotopically pure Hg spectral lamp is used to reach energetic coincidence with the hyperfine structure components of the 6s 2 1 S 06s6p 3P1,λ=2,537 A resonance line of the investigated isotope and the Hg lamp. The orientation built up by optical pumping is monitored via the asymmetry or anisotropy of the nuclear radiation. Nuclear spins, magneti…
Ultra-stable implanted 83Rb/83mKr electron sources for the energy scale monitoring in the KATRIN experiment
The KATRIN experiment aims at the direct model-independent determination of the average electron neutrino mass via the measurement of the endpoint region of the tritium beta decay spectrum. The electron spectrometer of the MAC-E filter type is used, requiring very high stability of the electric filtering potential. This work proves the feasibility of implanted 83Rb/83mKr calibration electron sources which will be utilised in the additional monitor spectrometer sharing the high voltage with the main spectrometer of KATRIN. The source employs conversion electrons of 83mKr which is continuously generated by 83Rb. The K-32 conversion line (kinetic energy of 17.8 keV, natural line width of 2.7 e…
Feasibility of photoelectron sources for testing the energy scale stablity of the KATRIN beta-ray spectrometer
Photoabsorption of nuclear gamma-rays in thin metallic convertors was examined with the aim to produce monoenergetic photoelectrons of kinetic energy around 18.6 keV and natural width of about 1 eV. Calculations were carried out for commercial photon sources of 241Am (1.1 GBq) and 119mSn (0.5 GBq) irradiating Co and Ti convertors. Photoelectrons ejected by 241Am gamma- and X-rays from Co convertors of various thickness were measured with two electrostatic spectrometers.
Orientation of199mHg by optical pumping detected by ?-radiation anisotropy
199mHg was produced and mass separated at the ISOLDE facility (CERN). Nuclear orientation achieved by optical pumping via the resonance line 6s21S0→6s6p3P1,λ=2537A was monitored by means of the anisotropy of theγ-radiation emitted in the cascade199mHg(I=13/2+) $${}^{199m}Hg(I = 13/2^ + )\xrightarrow[{M4}]{}{}^{199*}Hg(I = 5/2^ - )\xrightarrow[{E2}]{}{}^{199}Hg(I = 1/2^ - ).$$ 199*Hg(I=5/2−)199Hg(I=1/2−).
Improved limit on the electron-antineutrino rest mass from tritium ß-decay
Abstract The endpoint region of the β-spectrum of tritium was remeasured by an electrostatic spectrometer with magnetic guiding field. It enabled the search for a rest mass of the electron-antineutrino with improved precision. The result is m2v=−39±34stat±15syst(eV/c2)2, from which an upper limit of mv m( T )−m( 3 He )=18 591±3 eV /c 2 .
Determination of spin, magnetic moment and isotopic shift of neutron rich205Hg by optical pumping
Neutron rich205Hg (T 1/2=5.2 min) was produced and on-line mass separated at the ISOLDE facility at CERN. The polarization achieved by optical pumping via the atomic line (6s 21 S 0↔6s6p 3 P 1,λ=2 537A) was monitored by theβ decay asymmetry. Hyperfine structure and isotopic shift of the205Hg absorption line was determined by Zeeman scanning. In addition a magnetic resonance was performed on the polarized205Hg nuclei in the atomic ground state. The results are: $$I(^{205} Hg) = \tfrac{1}{2}$$ (confirmed);μ I (205Hg)=0.5915 (1)μ N (uncorrected for diamagnetism); isotopic shiftδv204/205=v(205Hg)-v(204Hg)=−1.8 (1) GHz.μ I and IS are discussed briefly in the frame of current literature.
Evidence for anI=1 isomeric state in96Rb
Aβ-RADOP (β-Radiation Detected Optical Pumping) experiment on the short lived (T1/2=203 ms)96Rb isotope has been performed at the on line mass separator for fission produced alkali isotopes at the TRIGA reactor in Mainz. Irradiation of r.f. onto the polarized sample to induce Zeeman transitions resulted in two signals for nuclear spinsI=2 andI=1. The previously undetermined component withI=1 is interpreted as evidence for an isomeric state in96Rb.
The quadrupole moment of the neutron-halo nucleus 11Li
The quadrupole moment ratio of 9Li and 11Li was measured by a combination of in-beam laser induced nuclear polarization and β-NMR in LiNbO3. The result |Q(11Li)/Q(9Li)| = 1.14(16) is consistent with cluster models describing 11Li as composed of a 9Li core and a far extended halo of two loosely bound neutrons.
A high resolution electrostatic time-of-flight spectrometer with adiabatic magnetic collimation
Abstract A new type of spectrometer for low energy charged particles is presented. It consists of an adiabatic magnetic collimation and two filters: an electrostatic retarding potential to set a lower limit (high pass) and a time-of-flight analysis to reject high energy charged particles (low pass). Both filters are only limited in their resolution by the efficiency of the adiabatic magnetic collimation. The proof of this principle is demonstrated by a pilot measurement on the K conversion line of 83mKr. Possible applications to pulsed and continuous electron sources are discussed with the emphasis on the investigation of the β spectrum of T2 to deduce information on the mass of the electro…
Precision measurement of the conversion electron spectrum of 83mKr with a solenoid retarding spectrometer
This paper reports on precision measurements of conversion lines in the decay of 83mKr with nuclear transition energies of 32.1 keV and 9.4 keV, respectively. The spectra were taken from a submonolayer surface of 83mKr frozen onto a cold backing, using the new Mainz solenoid retarding spectrometer. The high luminosity and resolution of this instrument enables the observation of all allowed conversion lines up to the N-shell and to fully separate the elastic component from inelastic satellites. The combined analysis of the data yields the transition energies Ey=32151.5±1.1 eV and 9405.9±0.8 eV, respectively. The experiment served also to pilot the application of this spectrometer to the ques…
Spins, moments and charge radii in the isotopic series181Hg-191Hg
The hyperfine structure splitting and the isotope shift in the (6 s2 1S0 - 6s 6p3P1,λ=2,537 A) line of very neutron deficient Hg isotopes were determined by the β radiation detected optical pumping method (β-RADOP). In addition, nuclear magnetic resonance was observed in the atomic ground state. The results are Mean-square nuclear charge radii are calculated. Interpreting the sudden change of nuclear radius between187Hg and185Hg δ〈r2〉187,185=0.42(5)fm2 as oblate-prolate shape transition, one obtains δ〈β2〉 =0.054(5).
A solenoid retarding spectrometer with high resolution and transmission for keV electrons
Abstract We have built an electrostatic electron spectrometer combining both high resolution and large luminosity. The instrument consists essentially of two superconducting solenoids separated by a system of ring electrodes of 4 m in length. Source and detector are placed in the high-field regions of the superconducting solenoids, whereas the repellent analyzing electrostatic potential of the ring electrodes peaks at the minimum of the magnetic field in between these solenoids. The magnetic guiding field provides (i) the acceptance of the full foreward solid angle of 2π, (ii) the transformation of the transverse cyclotron motion into longitudinal motion parallel to the magnetic field. The …
The KATRIN sensitivity to the neutrino mass and to right-handed currents in beta decay
The aim of the KArlsruhe TRItium Neutrino experiment KATRIN is the determination of the absolute neutrino mass scale down to 0.2 eV, with essentially smaller model dependence than from cosmology and neutrinoless double beta decay. For this purpose, the integral electron energy spectrum is measured close to the endpoint of molecular tritium beta decay. The endpoint, together with the neutrino mass, should be fitted from the KATRIN data as a free parameter. The right-handed couplings change the electron energy spectrum close to the endpoint, therefore they have some effect also to the precise neutrino mass determination. The statistical calculations show that, using the endpoint as a free par…
Nuclear spin and magnetic moment of 11Li
Abstract Nuclear spin and magnetic moment of 11Li have been measured by optical pumping of a fast atomic beam. The angular asymmetry of the β-radiation from the polarized nuclei was used to detect the hfs of the 2s 2 S 1 2 −2 p 2 P 1 2 resonance line and the NMR signal cubic LiF crystal lattice. The results I= 3 2 and μI=3.6673(25) n.m. indicate a pure 1p 3 2 state of the valence proton.
Feasibility of photoelectron sources with sharp lines of stable energy between 20 and 80 keV.
Photo-absorption of γ-rays in thin Al, Co, Ti, and Mo convertors was examined with the aim to produce quasi monoenergetic photoelectrons having an energy spread of 0.5-4.7eV about mean kinetic energies at discrete values between 18632 and 80321eV. The photoelectron rates were estimated for commercial photon sources of (241)Am, (119m)Sn, (125m)Te and (109)Cd with activities of 0.55-3.7GBq. Photoelectrons ejected by (241)Am γ- and X-rays from Co convertors were measured with two different electron spectrometers and obtained energy spectra were compared with Monte Carlo predictions.
Impact of a cryogenic baffle system on the suppression of radon-induced background in the KATRIN Pre-Spectrometer
The KATRIN experiment will determine the effective electron anti-neutrino mass with a sensitivity of 200 meV/c$^2$ at 90% CL. The energy analysis of tritium $\beta$-decay electrons will be performed by a tandem setup of electrostatic retarding spectrometers which have to be operated at very low background levels of $<10^{-2}$ counts per second. This benchmark rate can be exceeded by background processes resulting from the emanation of single $^{219,220}$Rn atoms from the inner spectrometer surface and an array of non-evaporable getter strips used as main vacuum pump. Here we report on a the impact of a cryogenic technique to reduce this radon-induced background in electrostatic spectrometer…
Impact of a cryogenic baffle system on the suppression of radon-induced background in the KATRIN Pre-Spectrometer
The KATRIN experiment will determine the effective electron anti-neutrino mass with a sensitivity of 200 meV/c2 at 90% CL. The energy analysis of tritium β-decay electrons will be performed by a tandem setup of electrostatic retarding spectrometers which have to be operated at very low background levels of <10−2 counts per second. This benchmark rate can be exceeded by background processes resulting from the emanation of single 219,220Rn atoms from the inner spectrometer surface and an array of non-evaporable getter strips used as main vacuum pump. Here we report on the impact of a cryogenic technique to reduce this radon-induced background in electrostatic spectrometers. It is based on ins…
Activity monitoring of a gaseous tritium source by beta induced X-ray spectrometry
Abstract For monitoring and control of gaseous tritium sources in fuel circulation systems of fusion reactors beta induced X-ray spectrometry (BIXS) seems to be an applicable method. The characteristics of a BIXS monitoring setup built at TLK were examined. A low-noise silicon drift detector (SDD) was used together with two thin beryllium windows evaporated with gold films of 100 nm for efficient X-ray production. The measured X-ray intensity was proportional to the tritium partial pressure and the average detection efficiency was evaluated as 32.6 × 10−8 cps/Bq. A tritium memory effect was revealed. From the results it was concluded that such a monitoring system would be a useful complemen…
Energy calibration and monitoring of the KATRIN experiment
A new high precision voltage divider has been built for monitoring the analysing potential of the KATRIN main spectrometer. In addition a condensed 83mKr calibration source has been set up at the modified 1 eV resolving Mainz spectrometer, our measurements show that energy calibration and monitoring for KATRIN is feasible at the few ppm level.
On dewetting dynamics of solid films of hydrogen isotopes and its influence on tritium [Beta] spectroscopy
The dewetting dynamics of solid films of hydrogen isotopes, quench-condensed on a graphite substrate, was measured at various temperatures below desorption by observing the stray light from the film. A schematic model describing the dewetting process by surface diffusion is presented, which agrees qualitatively with our data. The activation energies of different hydrogen isotopes for surface diffusion were determined. The time constant for dewetting of a quench-condensed T2 film at the working temperature of 1.86 K of the mainz neutrino mass experiment was extrapolated.