0000000000338616

AUTHOR

A. ŠPalek

showing 5 related works from this author

Commissioning of the vacuum system of the KATRIN Main Spectrometer

2016

The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. An integral energy analysis will be performed by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m[superscript 3], and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips ha…

010302 applied physicsPhysicsLight nucleusPhysics - Instrumentation and DetectorsSpectrometerSpectrometersPhysics::Instrumentation and DetectorsVacuum-basedFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)01 natural sciencesEnergy analysisNuclear physics0103 physical sciencesEnergy spectrumGas systems and purificationNeutrino detectorsddc:620010306 general physicsInstrumentationMathematical PhysicsEngineering & allied operationsKATRINdetectors
researchProduct

Limits on the release of Rb isotopes from a zeolite based 83mKr calibration source for the XENON project

2011

The isomer 83mKr with its half-life of 1.83 h is an ideal calibration source for a liquid noble gas dark matter experiment like the XENON project. However, the risk of contamination of the detector with traces of the much longer lived mother isotop 83Rb (86.2 d half-life) has to be ruled out. In this work the release of 83Rb atoms from a 1.8 MBq 83Rb source embedded in zeolite beads has been investigated. To do so, a cryogenic trap has been connected to the source for about 10 days, after which it was removed and probed for the strongest 83Rb gamma-rays with an ultra-sensitive Germanium detector. No signal has been found. The corresponding upper limit on the released 83Rb activity means tha…

Materials sciencePhysics - Instrumentation and DetectorsIsotope530 Physics3105 InstrumentationDark matterDetectorRadiochemistryCyclotronchemistry.chemical_elementNoble gasFOS: Physical sciences10192 Physics InstituteInstrumentation and Detectors (physics.ins-det)Semiconductor detectorlaw.inventionGenerator (circuit theory)Xenonchemistrylaw2610 Mathematical PhysicsAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)Mathematical Physics
researchProduct

Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN

2019

We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (−1.0−1.1+0.9) eV2. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a …

Semileptonic decayPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and DetectorsFOS: Physical sciencesGeneral Physics and AstronomyKinematicsElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]KATRIN01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)mass: scaleneutrino: mass: measured0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530S066MAESensitivity (control systems)Limit (mathematics)structure[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicstritiumPhysicsformationS066M2EInstrumentation and Detectors (physics.ins-det)semileptonic decaysensitivityddc:kinematicsElementary Particles and Fieldselectron: energy spectrumHigh Energy Physics::ExperimentPräzisionsexperimente - Abteilung BlaumNeutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)Astrophysics - Cosmology and Nongalactic AstrophysicsKATRINexperimental results
researchProduct

Ultra-stable implanted 83Rb/83mKr electron sources for the energy scale monitoring in the KATRIN experiment

2012

The KATRIN experiment aims at the direct model-independent determination of the average electron neutrino mass via the measurement of the endpoint region of the tritium beta decay spectrum. The electron spectrometer of the MAC-E filter type is used, requiring very high stability of the electric filtering potential. This work proves the feasibility of implanted 83Rb/83mKr calibration electron sources which will be utilised in the additional monitor spectrometer sharing the high voltage with the main spectrometer of KATRIN. The source employs conversion electrons of 83mKr which is continuously generated by 83Rb. The K-32 conversion line (kinetic energy of 17.8 keV, natural line width of 2.7 e…

PhysicsPhysics - Instrumentation and DetectorsElectron spectrometerSpectrometerPhysics::Instrumentation and DetectorsFOS: Physical sciencesHigh voltageElectronInstrumentation and Detectors (physics.ins-det)Inelastic scatteringKinetic energyComputational physicsDetectors and Experimental TechniquesNuclear Experiment (nucl-ex)Nuclear ExperimentInstrumentationElectron neutrinoMathematical PhysicsKATRIN
researchProduct

Feasibility of photoelectron sources with sharp lines of stable energy between 20 and 80 keV.

2011

Photo-absorption of γ-rays in thin Al, Co, Ti, and Mo convertors was examined with the aim to produce quasi monoenergetic photoelectrons having an energy spread of 0.5-4.7eV about mean kinetic energies at discrete values between 18632 and 80321eV. The photoelectron rates were estimated for commercial photon sources of (241)Am, (119m)Sn, (125m)Te and (109)Cd with activities of 0.55-3.7GBq. Photoelectrons ejected by (241)Am γ- and X-rays from Co convertors were measured with two different electron spectrometers and obtained energy spectra were compared with Monte Carlo predictions.

PhysicsRadiationPhotonElectron spectrometerSpectrometerMonte Carlo methodElectronAtomic physicsPhotoelectric effectKinetic energySpectral lineApplied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine
researchProduct