6533b833fe1ef96bd129ba49
RESEARCH PRODUCT
Protein hydrolysates and mo-biofortification interactively modulate plant performance and quality of ‘canasta’ lettuce grown in a protected environment
Claudio De PasqualeBeppe Benedetto ConsentinoFabio D'annaSalvatore La BellaYoussef RouphaelGiovanni IapichinoLeo Sabatinosubject
0106 biological sciences<i>Lactuca sativa</i> L.Biofortificationchemistry.chemical_elementPlant-derived PHsSettore AGR/04 - Orticoltura E Floricolturanitrogen indicesnutritional traitsNitrogen indice01 natural scienceschemistry.chemical_compoundNutritional traitSoluble solidsLactuca sativa LFood scienceProtein hydrolysatesCarotenoidchemistry.chemical_classificationSMolybdenum-enrichmentplant-based biostimulantsAgriculture04 agricultural and veterinary sciencesAscorbic acidNitrogenFunctional qualityPlant-based biostimulantchemistryChlorophyll040103 agronomy & agriculture0401 agriculture forestry and fisheriesLactuca sativa L.Leafy vegetablesAgronomy and Crop ScienceBiofortification010606 plant biology & botanydescription
Since the use of protein hydrolysates (PHs) enhances overall plant performance and quality of vegetables, they might be considered as a toll to face a number of concerns essentially associated to the growing request of premium quality foodstuff realized in agreement with eco-friendly agriculture practices. Molybdenum (Mo) is considered a fundamental trace element for human body. Thus, its shortage determines several disorders mainly related to neurological lesion and esophageal cancer. Biofortification of fruiting and leafy vegetables is a promising tool to prevent Mo deficiency in the human diet. The current study was carried out to assess the interactive effect of plant-derived PHs and Mo dosage (0.0, 0.5, 3.0, and 6.0 µmol L−1) on yield, morphology, nutritional and functional features, and nitrogen indices of ‘Canasta’ lettuce. Head fresh weight (HFW), head height (HH), ascorbic acid, K, Mg, total chlorophyll, as well as nitrogen use efficiency (NUE) index were positively correlated to PHs application. Furthermore, ascorbic acid and total chlorophyll were also improved by Mo supply. A great improvement in terms of soluble solid content (SSC), total sugars, total phenolic, carotenoids, Mo and N concentrations, nitrogen uptake efficiency (UE), and nitrogen physiological efficiency (PUE) indices was recorded when PHs application was combined with the highest Mo dosage (6.0 µmol L−1). Consequently, our results suggest that Mo-biofortification and PHs application can positively modulate ‘Canasta’ lettuce plant performance and quality.
year | journal | country | edition | language |
---|---|---|---|---|
2021-05-21 |