6533b833fe1ef96bd129c1d0
RESEARCH PRODUCT
Short-term adaptation of conditioned fear responses through endocannabinoid signaling in the central amygdala
Hector Romo-parraKornelia KamprathStefano GaburroHans-christian PapeBeat LutzMartin HäringMichael Doengisubject
MaleTime FactorsAction PotentialsAnxietyExtinction PsychologicalGABA AntagonistsPropanolaminesMice0302 clinical medicinePiperidinesReceptor Cannabinoid CB1Adaptation PsychologicalConditioning PsychologicalMoodFear conditioningHabituationStress DisordersMice Knockout0303 health sciencesBehavior AnimalCentral nucleus of the amygdalaValineFearExtinctionAmygdalaPyridazinesPsychiatry and Mental healthmedicine.anatomical_structureOriginal ArticlePsychologypsychological phenomena and processesSignal TransductionSensory Receptor CellsNeurophysiologyIn Vitro TechniquesInhibitory postsynaptic potentialAmygdala03 medical and health sciencesQuinoxalinesCannabinoid Receptor ModulatorsmedicineAnimalsMaze Learning030304 developmental biologyPharmacologyFear processing in the brainLearning & MemoryCannabinoidsExtinction (psychology)Phosphinic AcidsElectric StimulationMice Inbred C57BLGene Expression Regulationnervous systemSynaptic plasticityPyrazolesNeuroscienceExcitatory Amino Acid Antagonists030217 neurology & neurosurgeryEndocannabinoidsConditioningdescription
International audience; Both, the cannabinoid receptor type 1 (CB1) and the central nucleus of the amygdala (CeA) are known to play crucial roles in the processing of fear and anxiety, whereby they appear to be especially involved in the control of fear states. However, in contrast to many other brain regions including the cortical subregions of the amygdala, the existence of CB1 in the CeA remains enigmatic. Here we show that CB1 is expressed in the CeA of mice and that CB1 in the CeA mediates short-term synaptic plasticity, namely depolarization-induced suppression of excitation (DSE) and inhibition (DSI). Moreover, the CB1 antagonist AM251 increased both excitatory and inhibitory postsynaptic responses in CeA neurons. Local application of AM251 in the CeA in vivo resulted in an acutely increased fear response in an auditory fear conditioning paradigm. Upon application of AM251 in the basolateral nucleus of the amygdala (BLA) in an otherwise identical protocol no such acute behavioral effects were detected, but CB1 blockade resulted in increased fear responses during tone-exposures on the subsequent days. Moreover, we observed that the efficacy of DSE and DSI in the CeA was increased on the day following fear conditioning, indicating that a single tone-shock pairing resulted in changes in endocannabinoid signaling in the CeA. Taken together, our data show the existence of CB1 proteins in the CeA, and their critical role for ensuring short-term adaptation of responses to fearful events, thereby suggesting a potential therapeutic target to accompany habituation-based therapies of posttraumatic symptoms.
year | journal | country | edition | language |
---|---|---|---|---|
2010-10-27 |