6533b833fe1ef96bd129c255
RESEARCH PRODUCT
Multiphoton Quantum Optics and Quantum State Engineering
F. Dell'annoFabrizio IlluminatiS. De Sienasubject
Quantum opticsPhysicsQuantum PhysicsPhotonQuantum dynamicsGeneral Physics and AstronomyFOS: Physical sciencesQuantum PhysicsMultiphoton processes; quantum states engineering; nonclassical states; quantum informationquantum informationQuantum mechanicsMultiphoton processesPhysics::Atomic and Molecular ClustersCoherent statesPhysics::Atomic PhysicsQuantum information scienceQuantum Physics (quant-ph)QuantumQuantum teleportationQuantum computerquantum states engineeringnonclassical statesdescription
We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromnagnetic field, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.
year | journal | country | edition | language |
---|---|---|---|---|
2007-01-09 |