6533b833fe1ef96bd129c298

RESEARCH PRODUCT

$n$-harmonic coordinates and the regularity of conformal mappings

Tony LiimatainenMikko Salo

subject

Harmonic coordinatesMathematics - Differential GeometryPure mathematicsSmoothness (probability theory)GeneralizationGeneral MathematicsCoordinate systemta111conformal mappingsConformal map53A30 (Primary) 35J60 35B65 (Secondary)Riemannian manifoldMathematics - Analysis of PDEsDifferential Geometry (math.DG)Metric (mathematics)FOS: MathematicsDiffeomorphismMathematics::Differential GeometryMathematicsAnalysis of PDEs (math.AP)

description

This article studies the smoothness of conformal mappings between two Riemannian manifolds whose metric tensors have limited regularity. We show that any bi-Lipschitz conformal mapping or $1$-quasiregular mapping between two manifolds with $C^r$ metric tensors ($r > 1$) is a $C^{r+1}$ conformal (local) diffeomorphism. This result was proved in [12, 27, 33], but we give a new proof of this fact. The proof is based on $n$-harmonic coordinates, a generalization of the standard harmonic coordinates that is particularly suited to studying conformal mappings. We establish the existence of a $p$-harmonic coordinate system for $1 < p < \infty$ on any Riemannian manifold.

https://dx.doi.org/10.48550/arxiv.1209.1285