6533b833fe1ef96bd129c37e

RESEARCH PRODUCT

Fiber optical parametric polarizer

Thibaut SylvestreStéphane PitoisJ. FatomeCurtis R. MenyukBirgit StillerPh Morin

subject

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiber[SPI.OPTI] Engineering Sciences [physics]/Optics / PhotonicPhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 opticssymbols.namesakeOpticslaw0103 physical sciencesStokes parametersParametric statisticsOptical amplifierPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryAmplifierPolarizer021001 nanoscience & nanotechnologyOptical parametric amplifier[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicsymbolsDegree of polarization[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic0210 nano-technologybusiness

description

In this work, a fiber-optical parametric polarizer (FOPP), i.e., a polarizing device based on parametric amplification in optical fibers is demonstrated. This was achieved for both the signal and idler waves with 25 dB gain over a broad bandwidth using the strong polarization-dependent gain (PDG) of parametric amplifiers. The experimental values of the degree of polarization (DOP) calculated from the Stokes parameters are indicated above each sphere. The gain spectra are also plotted with the parametric gain and the signal OSNR in insets. The Poincare sphere represents the three normalized Stokes parameters (S1,S2,S3) in unit radius. Results show that he DOP of the signal significantly increases with the parametric gain, which means that the signal is simultaneously polarization-pulled and amplified. The best signal DOP is reached for the maximum parametric gain of 25 dB while keeping an optical signal to noise ratio (OSNR) of 22 dB. The idler SOP is also efficiently pulled towards the pump polarization. These results are in excellent agreement with a theoretical approach based on parametric gain.

https://hal.archives-ouvertes.fr/hal-00833159