6533b833fe1ef96bd129c437

RESEARCH PRODUCT

Enforcing Perceptual Consistency on Generative Adversarial Networks by Using the Normalised Laplacian Pyramid Distance

Ryan McconvilleValero LaparraRaul Santos-rodriguezAlexander Hepburn

subject

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceImage qualitymedia_common.quotation_subjectComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONMachine Learning (stat.ML)Translation (geometry)Image (mathematics)Machine Learning (cs.LG)Consistency (database systems)Statistics - Machine LearningPerceptionFOS: Electrical engineering electronic engineering information engineeringmedia_commonbusiness.industryDeep learningImage and Video Processing (eess.IV)Contrast (statistics)Pattern recognitionGeneral MedicineImage segmentationElectrical Engineering and Systems Science - Image and Video ProcessingGenerative Adversarial NetworkPerceptionArtificial intelligencebusiness

description

In recent years there has been a growing interest in image generation through deep learning. While an important part of the evaluation of the generated images usually involves visual inspection, the inclusion of human perception as a factor in the training process is often overlooked. In this paper we propose an alternative perceptual regulariser for image-to-image translation using conditional generative adversarial networks (cGANs). To do so automatically (avoiding visual inspection), we use the Normalised Laplacian Pyramid Distance (NLPD) to measure the perceptual similarity between the generated image and the original image. The NLPD is based on the principle of normalising the value of coefficients with respect to a local estimate of mean energy at different scales and has already been successfully tested in different experiments involving human perception. We compare this regulariser with the originally proposed L1 distance and note that when using NLPD the generated images contain more realistic values for both local and global contrast. We found that using NLPD as a regulariser improves image segmentation accuracy on generated images as well as improving two no-reference image quality metrics.

https://dx.doi.org/10.48550/arxiv.1908.04347