6533b833fe1ef96bd129c445

RESEARCH PRODUCT

Quantum Machine Learning: A tutorial

José D. Martín-guerreroLucas Lamata

subject

SpeedupTheoretical computer scienceQuantum machine learningComputer scienceCognitive NeuroscienceQuantum reinforcement learningQuantum computingFuzzy logicPopularityComputer Science ApplicationsComputational speed-upDevelopment (topology)Artificial IntelligenceQuantum clusteringQuantum informationQuantumQuantum-inspired learning algorithmsQuantum computerQuantum autoencoders

description

This tutorial provides an overview of Quantum Machine Learning (QML), a relatively novel discipline that brings together concepts from Machine Learning (ML), Quantum Computing (QC) and Quantum Information (QI). The great development experienced by QC, partly due to the involvement of giant technological companies as well as the popularity and success of ML have been responsible of making QML one of the main streams for researchers working on fuzzy borders between Physics, Mathematics and Computer Science. A possible, although arguably coarse, classification of QML methods may be based on those approaches that make use of ML in a quantum experimentation environment and those others that take advantage of QC and QI to find out alternative and enhanced solutions to problems driven by data, oftentimes offering a considerable speedup and improved performances as a result of tackling problems from a complete different standpoint. Several examples will be provided to illustrate both classes of methods. Ministerio de Ciencia, Innovación y Universidades GC2018-095113-B-I00,PID2019-104002GB-C21, and PID2019-104002GB-C22 (MCIU/AEI/FEDER, UE)