6533b833fe1ef96bd129c919

RESEARCH PRODUCT

Embeddings of a family of Danielewski hypersurfaces and certain \C^+-actions on \C^3

Lucy Moser-jauslinPierre-marie Poloni

subject

14R10; 14R05 ; 14L30equivalence of polynomialsDanielewski surfacesstable equivalence[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG][MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Physics::Atomic Physicsalgebraic embeddings[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]

description

International audience; We consider the family of complex polynomials in \C[x,y,z] of the form x^2y-z^2-xq(x,z). Two such polynomials P_1 and P_2 are equivalent if there is an automorphism \varphi of \C[x,y,z] such that \varphi(P_1)=P_2. We give a complete classification of the equivalence classes of these polynomials in the algebraic and analytic category.

https://hal.archives-ouvertes.fr/hal-00499456