6533b834fe1ef96bd129ccaa

RESEARCH PRODUCT

Accretion shock on CTTSs and its X-ray emission

G. G. SaccoC. ArgiroffiS. OrlandoA. MaggioG. PeresF. RealeEric Stempels

subject

Shock wavePhysicsPlanetary bow shocksAstrophysics::High Energy Astrophysical Phenomenainterplanetary shocksPlasmaAstrophysicsNumerical approximation and analysisThermal conductionAccretion (astrophysics)T Tauri starSettore FIS/05 - Astronomia E AstrofisicaX-ray emission spectra and fluorescenceRadiative transferHydrodynamicsAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsSpectral resolutionChromosphereAstrophysics::Galaxy Astrophysics

description

High spectral resolution X-ray observations of classical T Tauri stars (CTTSs) demonstrate the presence of plasma at T~2-3×10^6 K and ne~10^11-10^13 cm-3. Stationary models suggest that this emission is due to shock-heated accreting material. We address this issue by a 1-D hydrodynamic model of the impact of the accretion flow onto a chromosphere of a CTTS with the aim of investigating the stability of accretion shock and the role of the chromosphere. Our simulations include the effects of gravity, radiative losses from optically thin plasma, the thermal conduction and a detailed modeling of the stellar chromosphere. Here we present the results of a simulation based on the parameters of the CTTS MP Mus.

10.1063/1.3099112http://hdl.handle.net/10447/48990