0000000000320438
AUTHOR
Eric Stempels
The Sun as a benchmark of flaring activity in stellar coronae
The solar corona is a template to study and understand stellar activity. However the solar corona differs from that of active stars: the Sun has lower X‐ray luminosity, and on average cooler plasma temperatures. Active stellar coronae have a hot peak in their emission measure distribution, EM (T), at 8–20 MK, while the non‐flaring solar corona has a peak at 1–2 MK. In the solar corona significant amounts of plasma at temperature ∼10 MK are observed only during flares.To investigate what is the time‐averaged effect of solar flares we measure the disk‐integrated time‐averaged emission measure, EMF (T), of an unbiased sample of solar flares. To this aim we analyze uninterrupted GOES/XRS light …
The nearest X-ray emitting protostellar jet observed with HST
The HH 154 jet coming from the YSO binary L1551 IRS5 is one of the closest (about 150 pc) astrophysical jet known. It is therefore a unique laboratory for studies of outflow mechanisms and of the shocks forming at the interaction front between the expanding material and the ambient medium. The substructures (knots) observed within the HH 154 jet were imaged in several spectral bands using the Hubble Space Telescope. This allows us to derive a simple characterization of the physical conditions in different structures as well as to measure the proper motion of the knots in the jet, their flux variability and shock emission over a time base of about ten years. These knots in the jet undergo si…
Modeling the long duration rise phase of a flare detected on the M star TWA 11 B
We present preliminary results from the analysis of a long duration flare that was observed in a serendipitous XMM-Newton detection of the M star CD-39 7717 B (TWA 11 B), member of the young stellar association TW Hya. Only the rise phase (with a duration of ~35 ks) and possibly the flare peak are present in the light-curve. The decay phase was not monitored. The fluorescent iron emission line at 6.4 keV was observed during this event. As far as we are concerned, since TWA 11 B seems to have no disk, this is only the third detection of Fe photospheric fluorescence. During the flare, the X-ray flux increased a factor of ~4. Taking the light curve and the evolution of the hardness ratio into …
Accretion shock on CTTSs and its X-ray emission
High spectral resolution X-ray observations of classical T Tauri stars (CTTSs) demonstrate the presence of plasma at T~2-3×10^6 K and ne~10^11-10^13 cm-3. Stationary models suggest that this emission is due to shock-heated accreting material. We address this issue by a 1-D hydrodynamic model of the impact of the accretion flow onto a chromosphere of a CTTS with the aim of investigating the stability of accretion shock and the role of the chromosphere. Our simulations include the effects of gravity, radiative losses from optically thin plasma, the thermal conduction and a detailed modeling of the stellar chromosphere. Here we present the results of a simulation based on the parameters of the…
Modeling X-ray emission from stellar coronae
By extrapolating from observationally derived surface magnetograms of low-mass stars we construct models of their coronal magnetic fields and compare the 3D field geometry with axial multipoles. AB Dor, which has a radiative core, has a very complex field, whereas V374 Peg, which is completely convective, has a simple dipolar field. We calculate global X-ray emission measures assuming that the plasma trapped along the coronal loops is in hydrostatic equilibrium and compare the differences between assuming isothermal coronae, or by considering a loop temperature profiles. Our preliminary results suggest that the non-isothermal model works well for the complex field of AB Dor, but not for the…